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Benôıt Douçot
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Why categories?

I Original framework for mathematical constructions of
topological field theories in 2+1 dimensions
(Reshetikhin-Turaev (1991), Turaev-Viro (1992)).

I Explicit lattice Hamiltonian formulations (Levin-Wen (2005)).

I Extensions to higher dimensions
(next week lecture by C. Delcamp).

I Generalized symmetries and dualities
(next week lecture by L. Lootens).

I Provides many new models (general constructions), and also
helps to understand why things work: many calculations are
replaced by drawings!



Various constructions of TQFT’s in 2+1 dimensions

I Reshetikhin-Turaev construction requires a modular tensor
category C. Defines a Hilbert space ZRT,C(Σ) for any closed
surface Σ and a vector ZRT,C(M) ∈ ZRT,C(∂M) for any
smooth 3-manifold M. This is a non local construction, since
it uses surgery of manifolds.

I Turaev-Viro (generalized by Barrett-Westbury (1996))
requires a (spherical) fusion category A as input. This
construction is local, and it involves discretized path integrals.

I Key result: ZTV,A = ZRT,Z(A), where Z(A) is the Drinfeld
center of A (Reshetikhin-Virelizier (2010), Balsam-Kirillov
(2010)).

I String nets: explicit construction of ZTV,A(Σ) as ground-state
of a local lattice Hamiltonian (Levin-Wen (2005)).
Generalization of Kitaev’s lattice gauge theory model of
anyons (1997-2003).



Outline

1) Kitaev’s lattice gauge model as a string net: magnetic picture
2) String nets from a fusion category
3) Kitaev’s lattice gauge model as a string net: electric picture
4) Boundary excitations: the center construction



2D topological lattice gauge theories (Kitaev (2003))

Consider a planar graph, and a finite group G . The Hilbert space
of the model is H = HZFC/N . HZFC has an orthonormal basis of
vectors |{gij}〉, with ij a link on the lattice, gij = g−1ji ∈ G ,
satisfying the zero flux condition: gi1i2 gi2i3 ...gil i1 = e for any
plaquette bounded by l links.
Gauge transformations: Pick hi ∈ G for each site i . Define
(Th g)ij = hi gij h

−1
j . This transformation preserves the zero flux

condition on all plaquettes. N is the subspace of HZFC generated
by vectors |{gij}〉 − |{(Th g)ij}〉.

HZFC = HZFC,S ⊕N

So H = HZFC/N ∼= HZFC,S = ground-state of (id− PS).



2D topological lattice gauge theories (II)

Key fact: On a simply connected planar graph, any fluxless gauge
configuration is related to the trivial one (gij = e) by a gauge
transformation.
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We wish to find {hi} such that
hi gij h

−1
j = e

h5 = h0 g01 g12 g23 g34 g45

h5 = h0 g06 g67 g78 g89 g95

For a fluxless configuration, both paths give the same h5: a
non-Abelian and discrete version of Stokes’ theorem.
Cohomological viewpoint on 2D topological theories.

S2 is simply connected, so H(S2) = C. There exists a topological
ground-state degeneracy on positive genus closed compact surfaces
Σ, i.e. dimH(Σ) ≥ 2 −→ idea of topological quantum
computation (Kitaev (1997-2003)).



Sphere with n holes

...

k1 k2 kn

g1 g2 gn
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1 2 n

fluxless condition through
complement of the holes:
k1 g1 k

−1
1 · · · kn gn k−1n = e

Gauge transformations:

ki → h0 ki h
−1
i

gi → hi gi h
−1
i

Setting hi = h0ki , we get ki = e. So H(S2, n) = HZFC/N , where
HZFC is spanned by basis vectors |g1, · · · , gn〉 such that
g1 g2 · · · gn = e, and N is generated by nul vectors
|g1, · · · , gn〉 −

∣∣h g1 h−1, · · · , h gn h−1〉 associated to gauge
transformations.
If n = 1, dim (H(S2, 1)) is equal to the number of conjugacy
classes of G . For n ≥ 2, we can fix conjugacy classes
Cl1,Cl2, ...,Cln attached to the holes.

H(S2, n,Cl1, ...,Cln) = HomZ(VecG )(1, (X (Cl1), id)⊗· · ·⊗(X (Cln), id))



2D topological lattice gauge theories (III)



Proposed implementation with Josephson circuits

G is the permutation group S3
Douçot, Ioffe, Vidal, PRB 69, 214501 (2005)
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Basics of categories

”Since a category consists of arrows, our subject could also be
described as learning how to live without elements, using arrows
instead.” S. Mac Lane, Categories for the working mathematician (1971)

a

b c

g

f

f ◦
g

f ∈ Hom(b, c), g ∈ Hom(a,b)
f ◦ g ∈ Hom(a, c)
ida ∈ Hom(a, a), idb ∈ Hom(b, b)
g ◦ ida = g = idb ◦ g

Example: Consider an ordered set (S ,≤). It defines a category C,
whose objects are elements of S and Hom(a, b) contains a unique
arrow if a ≤ b, and is empty otherwise.



C-linear categories

I Hom(a, b) is a finite dimensional vector space over C, such
that composition of arrows is C-bilinear:

h◦(λf +µg) = λ(h◦ f )+µ(h◦g)
(λh+µk)◦ f = λ(h◦ f )+µ(k ◦g)

f , g ∈ Hom(a, b)
h, k ∈ Hom(b, c)
λ, µ ∈ C.

I Existence of a zero object 0, such that
Hom(0, 0) = 0 = {id0}.

I Existence of direct sums a⊕ b.

a

b

a

b

a⊕ b

ida

idb

i

j

p

q

p ◦ i = ida, q ◦ j = idb

q ◦ i = 0, p ◦ j = 0
i ◦ p + j ◦ q = ida⊕b



C-linear categories (II)

Important consequence:

Hom(
⊕
α

aα,
⊕
β

bβ) ∼=
⊕
α,β

Hom(aα, bβ)

f 7→ {fα,β = pβ ◦ f ◦ iα}

Fusion categories

I Each object X is a finite direct sum of simple objects Xi :
X =

⊕
i niXi . Hom(Xi ,Xj) = 0 if i 6= j and (C alg. closed)

Hom(Xi ,Xi ) = C idXi
.

I There are finitely many simple objects (modulo isomorphisms).



First contact with string net models

Plaquette of lattice gauge model → site on the
dual lattice. Zero flux condition g1 g2 g3 g4 = e
at each dual lattice site.

g1g3

g2

g4

The VecG category

I Objects: G -graded vector spaces V =
⊕

g∈G Vg over C
I Arrows from V to W : Collection of linear maps fg : Vg →Wg

I Simple objects: δg such that (δg )h = 0 if g 6= h and
(δg )g = C.

First step: assign an object of VecG to each link of (dual) lattice.
But: how to implement the zero flux condition at (dual) lattice
sites?
g1 g2 g3 g4=e ⇔ Hom(C, δg1 ⊗ δg2 ⊗ δg3 ⊗ δg4)6=0
Each site satisfies the VecG fusion rules.



Further requests for A (input category) from string nets

Fusion rule for A = VecG involves Hom(C, δg1⊗δg2⊗δg3⊗δg4). For
a general A:

I C is replaced by a unit object, denoted by 1.

I We need a notion of tensor product.
In VecG : (V ⊗W )g =

⊕
h(Vh ⊗Wh−1g).

I A link is adjacent to two sites. We need to swap orientation:
gij → gji = g−1ij becomes Vij → V ∗ij : notion of duality.



Tensor products: associativity constraints

a⊗ (b ⊗ c)

a′ ⊗ (b′ ⊗ c ′)

(a⊗ b)⊗ c

(a′ ⊗ b′)⊗ c ′

αabc

αa′b′c ′

f ⊗ (g ⊗ h) (f ⊗ g)⊗ h

a⊗ (b ⊗ (c ⊗ d))

(a⊗ b)⊗ (c ⊗ d)

((a⊗ b)⊗ c)⊗ d

a⊗ ((b ⊗ c)⊗ d) ((a⊗ (b ⊗ c))⊗ d



Tensor products: the unit object

a⊗ (1⊗ c)

a⊗ c

(a⊗ 1)⊗ c

a⊗ c

αa1c

id

ida ⊗ λc ρa ⊗ idc

Mac Lane Coherence theorem: Consider words composed of
objects in A, tensor product signs, and parentheses. Pick a pair of
words, involving the same sequences of objects, but differing in
terms of location of parentheses and of possible of ocurrences of 1.
Example: (((a⊗ 1)⊗ (b⊗ c))⊗ 1)⊗ d and a⊗ (b⊗ (c ⊗ d)). It is
possible to connect them by several different sequences of arrows,
involving α, λ and ρ isomorphisms. Then: all such sequences
induce the same arrow between these two words.



Duality (I)

V ∗ is a left dual for V if we have two arrows evV : V ∗ ⊗ V → 1
and coevV : 1→ V ⊗ V ∗ such that (rigidity):

V
λ−1
V−−→ 1⊗ V

coev⊗id−−−−−→ (V ⊗ V ∗)⊗ V
α−1

−−→ V ⊗ (V ∗ ⊗ V )
id⊗ev−−−→

V ⊗ 1
ρV−→ V = idV

V
ρ−1
V∗−−→ V ∗ ⊗ 1

id⊗coev−−−−−→ V ∗ ⊗ (V ⊗ V ∗)
α−→ (V ∗ ⊗ V )⊗ V ∗

ev⊗id−−−→
1⊗ V ∗

λV∗−−→ V ∗ = idV ∗ .

Vec: (finite dimensional vector spaces). evV : V ∗ ⊗ V → C sends
ϕ⊗ v into ϕ(v). Pick dual bases {αi}, {ej} for V ∗ and V , i.e.
αi (ej) = δij . coevV : C→ V ⊗ V ∗ sends 1 ∈ C into

∑
i ei ⊗ αi .

Rigidity: v =
∑

i αi (v) ei and ϕ =
∑

i ϕ(ei )αi for any v ∈ V and
ϕ ∈ V ∗.

VecG : 1 = δe . (V ∗)g = (Vg−1)∗.



Graphical representation of duality axiom

coev

ev

V

V

V ∗ = V

coev

ev V ∗

V ∗

V = V ∗



Duality (II)

Extended coherence theorem: Consider words composed of objects
in A, tensor product signs, and parentheses. Pick a pair of words,
differing in terms of location of parentheses and of possible of
ocurrences of 1, but also via possible annihilation (resp. creation)
of a∗a (resp aa∗) pairs. It is possible to connect them by several
different sequences of arrows, involving α, λ, ρ isomorphisms, and
ev and coev arrows. Then: all such sequences induce the same
arrow between these two words.

Example:
((a⊗ (b ⊗ 1))⊗ c∗)⊗ ((c ⊗ d)⊗ 1)→ (a⊗ e)⊗ ((e∗ ⊗ b)⊗ d)



Graphical representation

((a⊗ (b ⊗ 1))⊗ c∗)⊗ ((c ⊗ d)⊗ 1)→ (a⊗ e)⊗ ((e∗ ⊗ b)⊗ d)

a b c∗ c d

a e e∗ b d



Expression of arrows from simple objects

A =
⊕

i niXi , where ni = dim Hom(A,Xi ) = dim Hom(Xi ,A).
Consider dual bases {uiα} for Hom(Xi ,A), and {viα} for
Hom(A,Xi ), i.e. viα ◦ uiα = δij idXi

. Then:

idA =
∑
i ,α

uiα ◦ viα

Consider f : A −→ B. f = f ◦ idA =
∑

i ,α (f ◦ u(A)iα ) ◦ v (A)iα .

f ◦ u(A)iα =
∑

µ u
(B)
iµ ◦ (v

(B)
iµ ◦ f ◦ u

(A)
iα ).

v
(B)
iµ ◦ f ◦ u

(A)
iα =

〈
µ|F f

i |α
〉

idXi

f ◦ u(A)iα =
∑
µ

〈
µ|F f

i |α
〉
u
(B)
iµ



F symbols for associativity isomorphisms

A = (Xi ⊗ Xj)⊗ Xk , B = Xi ⊗ (Xj ⊗ Xk) and f = aXi ,Xj ,Xk
.

p

β

α

q

ai ,j ,k

i j

k

i j k

=
∑

r ,µ,ν

〈
r , µ, ν|F ijk

p |q, α, β
〉

p

ν

i

r

µ

j k



Definition of HFR

Generalization of HZFC, defined for A = VecG . Inspired directly by
A. Kirillov, Jr., arXiv:1106.6033.

States |{gij}〉 are replaced by |{V (e), ϕ(v)}〉.
I For each edge e choose an object V (e) in A.

I Arrow reversal: V (ē) = V (e)∗

I For each vertex v choose
ϕ(v) ∈ Hom(1,V (e1)⊗ ...⊗ V (en)).

v e1

e2e3

en

Notion of isomorphism between {V (e), ϕ(v)} and {V ′(e), ϕ′(v)}:
Defined by a collection of isomorphisms fej : V (ej)→ V ′(ej), such
that: ϕ′(v) = (fe1 ⊗ ...⊗ fen) ◦ ϕ(v).



Cyclic permutation symmetry around a vertex (I)

Hom(1,V1 ⊗ ...⊗ Vn−1 ⊗ Vn)
Z−→ Hom(1,Vn ⊗ V1 ⊗ ...⊗ Vn−1)

Hom(1,V ′1 ⊗ ...⊗ V ′n−1 ⊗ V ′n)
Z ′−→ Hom(1,V ′n ⊗ V ′1 ⊗ ...⊗ V ′n−1)

(f1 ⊗ ...⊗ fn−1 ⊗ fn) ◦ . (fn ⊗ f1 ⊗ ...⊗ fn−1) ◦ .

Pivotal structure δV : V → V ∗∗

Zφ φ=

Vn V1 Vn−1· · · V1 V2 · · · Vn

V ∗∗n
V ∗nVn



Cyclic permutation symmetry around a vertex: Z n = id

Consequence of δV1⊗V2 = δV1 ⊗ δV2 (set W = V1 ⊗ · · · ⊗ Vn)

Znφ

W

= φ

W

W ∗∗

W ∗
W

= φ

WW ∗ W ∗∗ W ∗
W

= φ

W

δ is a natural transformation rigidity



Definition of the N subspace (I)

Goal: define local updates of {V (e), ϕ(v)}, which do not change
the state of the system outside of a finite connected region.

−

V1

V2 V3

V4

W ∈ N

V1

V2 V3

V4

ϕ ψ χ

How to assign a meaning to this notion?

=ϕ ψ χ

V1 V2 V3 V4

W ∗ W

V1V2V3V4



Definition of the N subspace (II)

X1

X2

X3

X4

ϕ1ϕ2

ϕ3 ϕ4

ψ

V1V2

V3 V4

V1V2

V3 V4

where ψ is given by:

ϕ1 ϕ2 ϕ3 ϕ4

V1 V2 V3 V4

X1 X2 X3 X4X ∗2 X ∗3 X ∗4 X ∗1X ∗1 X1

X ∗∗1



H on a sphere

H(S2 − {p}) = H(R2) = HomA(1, 1) = C
π : H(S2 − {p}) −→ H(S2) surjective so dimH(S2) ≤ 1.
When do we have dimH(S2) = 1?
A: Constraint near p should always be satisfied.

p f =

X

X

X ∗∗
X ∗

X ∗

trR(f )

p f =

X

X

X ∗∗
X ∗

X ∗

p f

trL(f )

X

X

X ∗∗

X ∗

Equality holds when A is spherical, i.e. when trL(f ) = trL(f ) for
any arrow f .



Dimension of objects

=X ∗ X ∗δX δ−1X

X

X ∗∗ X

X ∗∗dX id1

Kirillov (2011)



The Levin-Wen projector (I)

ImBp

H(Σ− {p}) H(Σ)

i

π

π̃

Bpψ − ψ ∈ N (Σ) for any ψ ∈ H(Σ− {p}), so π̃ is surjective.

Description of Kerπ

Kirillov (2011)

If ψ ∈ Kerπ then Bpψ = 0, so π̃ is injective.



The Levin-Wen projector (II)

A. Kitaev and Liang Kong, Comm. Math. Phys. 313, 351 (2012)
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Motivation for RepG string-net

On a given link, associated Hilbert space is C[G ] =
⊕

g∈G C |g〉.
Left action of G on C[G ]: Lh |g〉 = |hg〉.
Right action of G on C[G ]: Rh |g〉 =

∣∣gh−1〉.
These two actions commute.

giji j

Gauge transformation: T (hi , hj) = Lhi ◦ Rhj

Gauge invariant constraint at site i : project on singlet subspace of⊗
j C[G ]ij for the Lhi action, equivalent to choose an element in

HomRepG (C,
⊗

j C[G ]ij), i.e. to satisfy RepG fusion rule at site i .



Basics of RepG (I)

Objects: Finite dimensional representations (E , ρ) of G .
Arrows: HomRepG ((E , ρ), (F , σ)) is composed of linear maps
f : E −→ F such that

E

F

E

F

ρg

σg

f f
commutes for any g
in G .

Tensor product: (E , ρ)⊗ (F , σ) ∼= (E ⊗ F , ρ⊗ σ).
Unit object: 1 = (C, id).

HomRepG (1, (E , ρ)) ∼= {v ∈ E , ρg (v) = v ,∀g ∈ G}: Invariant
subspace of E under ρ.



Basics of RepG (II)

Duality: (E , ρ)∗ = (E ∗, ρ∗), where ρ∗g = ρTg−1 .
Exercise: Check that evE : E ∗ ⊗ E → C and coevE : C→ E ⊗ E ∗

defined in Vec also define arrows in RepG .

Simple objects: Finite dimensional irreducible representations
(Ei , ρi ) of G .

Classical decomposition of C[G ]:
As a vector space: C[G ] =

⊕
i Ei ⊗ E ∗i

Left action:
⊕

i (Ei , ρi )⊗ (E ∗i , id)
Right action:

⊕
i (Ei , id)⊗ (E ∗i , ρ

∗
i )

Used in Buerschaper and Aguado PRB 80, 155136 (2009).



Fluxless constraint in RepG (I)

g41

g12

g23

g34

12

3 4

E1E2

E3 E4

H = (
⊗n

i=1 Ei )
⊗(⊕

{gij}C |{gij}〉
)

RepG string-net prescription:
First apply gauge invariance at vertices, to get HFR , using:

T ({hi})(v ⊗ |{gij}〉) = (⊗iρi ,hi )(v)⊗
∣∣∣{hi gij h−1j }

〉
Then form HFR/N ∼= HomRepG (1,

⊗
i (Ei , ρi )).

Question: Is this equivalent to imposing the fluxless constraint:
g12 g23...gn−1,n gn1 = e ?



Fluxless constraint in RepG (II)

H = (
⊗n

i=1 Ei )
⊗(⊕

{gij}C |{gij}〉
)

Fluxless constraint: g12 g23...gn−1,n gn1 = e defines HZFC.

Gauge action: T ({hi})(v ⊗ |{gij}〉) = (⊗iρi ,hi )(v)⊗
∣∣∣{hi gij h−1j }

〉
In fluxless sector, we can bring {gij} to the trivial configuration
{gij = e} by a gauge transformation, which has for stabilizor
{hi = h}, i.e. the diagonal subgroup in G1 × ...× Gn.

Invariant states in HZFC are in 1 to 1 correspondence with
invariant states in

⊗
i Ei under ρ =

⊗
i ρi , that is

HomRepG (1,
⊗

i (Ei , ρi )).

This is the expected image subspace of the plaquette projector in
the RepG string-net model.



Morita equivalence

Comm. Math. Phys. 313, 351 (2012)



Module categories: associativity constraints

X ⊗ (Y ⊗M)

X ′ ⊗ (Y ′ ⊗M ′)

(X ⊗ Y )⊗M

(X ′ ⊗ Y ′)⊗M ′

mXYM

mX ′Y ′M′

f ⊗ (g ⊗ h) (f ⊗ g)⊗ h
X ,Y ,Z ,X ′,Y ′ in C
M,M ′ in M

X ⊗ (Y ⊗ (Z ⊗M))

(X ⊗ Y )⊗ (Z ⊗M)

((X ⊗ Y )⊗ Z )⊗M

X ⊗ ((Y ⊗ Z )⊗M) ((X ⊗ (Y ⊗ Z ))⊗M



Module categories: behavior of the unit object

X ⊗ (1⊗M)

X ⊗M

(a⊗ 1)⊗ c

X ⊗M

αX1M

id

idX ⊗ λM ρX ⊗ idM

Important example of module category:
M = Vec is a module category over C = VecG and also over
D = RepG .



Module categories and line defects

Kitaev and Kong (2012)



Outline

1) Kitaev’s lattice gauge model as a string net: magnetic picture
2) String nets from a fusion category
3) Kitaev’s lattice gauge model as a string net: electric picture
4) Boundary excitations: the center construction



Point excitations in string-net models

Flux: VecG fusion rule violated at a dual lattice site.
Charge: RepG fusion rule violated at an original lattice site.

Y YX1

X2

X3

X4

ϕ1ϕ2

ϕ3 ϕ4

ψ

V1V2

V3 V4

V1V2

V3 V4

ϕ1 ϕ2 ϕ3 ϕ4

V1 V2 V3 V4

X1 X2 X3 X4X ∗2 X ∗3 X ∗4 X ∗1X ∗1 X1

X ∗∗1

Y

?



Definition of Z (A)(I )

Objects of Z (A) are pairs (X , σ) with X object in A and σ is an
half-braiding, i.e. a collection of arrows σV : V ⊗ X −→ X ⊗ V
defined for any object V in A, subject to two conditions:
Naturality:

V ⊗ X

W ⊗ X

X ⊗ V

X ⊗W

σV

σW

f ⊗ idX idX ⊗ f
commutes for all
f ∈ HomA(V ,W ).

Compatibility with tensor product: σV⊗W is given by:

(V ⊗W )⊗ X V ⊗ (W ⊗ X ) V ⊗ (X ⊗W )

(V ⊗ X )⊗W(X ⊗ V )⊗WX ⊗ (V ⊗W )

αV ,W ,X idV ⊗ σW

α−1V ,X ,W

σV ⊗ idWαX ,V ,W

σV⊗W



Definition of Z (A)(II )

An arrow f of Z (A) from (X , σ) to (Y , τ) is an arrow
f ∈ HomA(X ,Y ) such that:

V ⊗ X

V ⊗ Y

X ⊗ V

Y ⊗ V

σV

τV

idV ⊗ f f ⊗ idV

commutes for any
object V in A.



Z (A) has tensor products

(X , σ)⊗ (Y , τ) = (X ⊗ Y , τ.σ), where τ.σ is the half-braiding
defined by:

V ⊗ (X ⊗ Y ) (V ⊗ X )⊗ Y (X ⊗ V )⊗ Y

X ⊗ (V ⊗ Y )X ⊗ (Y ⊗ V )(X ⊗ Y )⊗ V

α−1V ,X ,Y σV ⊗ idY

αX ,V ,W

idX ⊗ τVα−1X ,Y ,V

(τ.σ)V

Exercises:

I Check that τ.σ satisfies the two constraints (naturality and
compatibility with tensor product) involved in the definition of
a half-braiding.

I For f : (X , σ)→ (X ′, σ′), g :→ (Y , τ), (Y ′, τ ′), check that
f ⊗ g : (X , σ)⊗ (Y , τ)→ (X ′, σ′)⊗ (Y ′, τ ′) also defines an
arrow in Z (A).



Associativity of tensor product and unit object in Z (A)

((X , ρ)⊗ (Y , σ))⊗ (Z , τ) (X , ρ)⊗ ((Y , σ)⊗ (Z , τ))

((X ⊗ Y )⊗ Z , τ.(σ.ρ)) (X ⊗ (Y ⊗ Z ), (τ.σ).ρ)
αX ,Y ,Z

∼= ∼=
Exercises:

I Check that αX ,Y ,Z defines an arrow from
((X ⊗ Y )⊗ Z , τ.(σ.ρ)) to (X ⊗ (Y ⊗ Z ), (τ.σ).ρ) in Z (A).

I Check that naturality of α and pentagon identify transfer
from A to Z (A).

I Check that (1, τ) with
τV = l−1V ◦ rV : V ⊗ 1 −→ V −→ 1⊗ V is an object in Z (A).

I Check that (1, τ) is a unit object with respect to the tensor
product in Z (A).



Description of Z (VecG ) (I)

Naturality: (X , σ) is determined by a collection of linear maps
σg ,k : Xk

∼= (δg ⊗ X )gk −→ (X ⊗ δg )gk ∼= Xgkg−1

Minimal objects of Z (VecG ) are supported on given conjugacy
class Cl(k) of G .

Compatibility with tensor product: σgh,k = σg ,hkh−1 ◦ σg ,k
If g , h ∈ Stab(k), σgh,k = σg ,k ◦ σg ,k , so we get a representation ρ
of Stab(k), acting on a C vector space E .

Description of (X , σ): Pick a set of representatives {gi} so that
any element in Cl(k) may be uniquely written as gikg

−1
i . Then:

Xgikg
−1
i

= Cei ⊗ E

σh(ei ⊗ v) = ej ⊗ ρ(s)(v)

hgi = gjs, s ∈ Stab(k)



Description of Z (VecG ) (II)

Arrows f̂ from (X , σ) to (Y , τ):

I If (X , σ) and (Y , τ) are supported on different conjugacy
classes: HomZ(VecG )((X , σ), (Y , τ)) = 0.

I If (X , σ) and (Y , τ) are both supported on Cl(k):
HomZ(VecG )((X , σ), (Y , τ)) = HomRep(Stab(k))(ρσ, ρτ ).

E

F

E

F

ρσ(s)

ρτ (s)

f f commutes for all s ∈ Stab(k)

f̂ (ei ⊗ v) = ej ⊗ f (v).



Magnetic flux excitations in Z (VecG )

Magnetic flux excitations correspond to choosing the identity
representation of Stab(k): E = C and id(s) = idC for all
s ∈ Stab(k). The corresponding object
X (Cl(k)) =

⊕
g∈Cl(k)C |g〉. Then:

σh(|g〉) =
∣∣hgh−1〉

Tensor product of magnetic flux excitations:
(X (Cl1), id)⊗ · · · ⊗ (X (Cln), id) is associated to the G -graded
vector space X =

⊕
gi∈Ci

C |g1, ..., gn〉. The grading is defined by
|g1, ..., gn〉 ∈ Xg1...gn .

σh |g1, ..., gn〉 =
∣∣hg1h−1, ..., hgnh−1〉



HomZ (VecG )(1, (X (Cl1), id)⊗ · · · ⊗ (X (Cln), id))

Motivation: Space of states on a sphere with n punctures, carrying
magnetic flux excitations associated to Cl1, · · · ,Cln conjugacy
classes.
Define (X , σ) = (X (Cl1), id)⊗ · · · ⊗ (X (Cln), id).

HomZ(VecG )(1, (X , σ)) = HomZ(VecG )(1, (Xe , σe))

= HomRep(G)(id, σe)

= {v ∈ Xe |∀h ∈ G , σh(v) = v}

I Basis for Xe : {|g1, ..., gn〉 |gi ∈ Cli , g1...gn = e}.
I σh permutes basis vectors.

I Dimension of invariant vectors subspace = number of orbits of
basis vectors under σh permutations (gauge transformations)
= original lattice gauge theory count.



Equivalence between Z (A) and Rep(TA)

Developed in Lan and Wen (PRB (2014)).
General proof for A spherical fusion category given by Popa,
Shlyakhtenko, Vaes (2018).

Useful, because Rep(TA) is semi-simple, i.e. any representation of
T (A) can be decomposed as a direct sum of irreducible
representations (Müger (2003)).

I will follow the presentation of Hardiman (arXiv:1911.07271). He
introduces a category T (A) called the tube category of A, and a
related category RT (A). He shows separately equivalence between
Z (A) and RT (A) and then between RT (A) and Rep(TA).



The tube category T (A)

I Objects are the same as the objects of A.

I Arrows are different:
HomT (A)(X ,Y ) =

⊕
R HomA(R ⊗ X ,Y ⊗ R).

I TA = HomT (A)(
⊕

R ,
⊕

S) =
⊕

R,S HomA(R ⊗ S ,S ⊗ R).

I Arrow composition: g ◦ f is given by:

fR

gSb

b∗
X

T

R

R Y

S

S

Z

T

⊕
T

∑
R,S ,b



The RT (A) category

Objects of RT (A): contravariant functors F from T (A) to Vec.
Example: Hom(.,Z ), where Z is a fixed object in T (A).

T (A)

X

Y

u

Vec

Hom(X ,Z )

Hom(Y ,Z )

.◦u

Vec

F (X )

F (Y )

F (u)

F preserves composition of
arrows:
F (u ◦ v) = F (v) ◦ F (u)

Arrows of RT (A): natural transformations ν between functors.

T (A)

X

Y

u

Vec

G (X )

G (X )

G (u)

Vec

F (X )

F (Y )

F (u)

νX

νY



Notion of equivalence between categories

Categories A and B are said to be equivalent if there exists a
functor Φ from A to B such that:

I For all pairs of objects A, A′ in A,
Φ : HomA(A,A′)→ HomB(Φ(A),Φ(A′)) is bijective. Φ is
said to be fully faithful.

I For any object B in B, there exists an object A in A such that
B is isomorphic to Φ(A). Φ is said to be essentially surjective.



Equivalence between Z (A) and RT (A) (I)

Wanted: a functor Φ from Z (A) to RT (A).
Start from an object (X , τ) in Z (A). We define from it an object
F = Φ(X , τ) in RT (A), i.e a functor from T (A) to Vec.

Action of F on objects in T (A):
F (Y ) = HomA(Y ,X ).
Action of F on arrows in T (A):

T (A)

Z

Y

αG

Vec

F (Z ) = HomA(Z ,X )

F (Y ) = HomA(Y ,X )

F (αG )
αG

g

τG∗

Z

G

Y

X

G

G ∗∗

G ∗

X



Equivalence between Z (A) and RT (A) (II)

Exercise: Given G ,H,R,S ,T simple objects in A and λ, µ so that

λ ∈ HomA(G ⊗ S ,R ⊗ G ) defines λG ∈ HomT (A)(S ,R)

µ ∈ HomA(H ⊗ T , S ⊗ H) defines µH ∈ HomT (A)(T ,S)

Check that F (λG ◦ µH) = F (µH) ◦ F (λG ), i.e. F is a functor from
T (A) to Vec.

Should also be discussed: action of Φ on arrows in Z (A) gives
arrows in RT (A).

For a proof that Φ is an equivalence between Z (A) and RT (A),
see section 7 of Hardiman (2019).



Equivalence between RT (A) and Rep(TA)

Define U =
⊕

S , object in T (A). Then: TA = HomT (A)(U,U).
For F object of RT (A), i.e. a functor from T (A) to Vec, F (U) is
a C vector space, on which TA acts by right multiplication:
If f : U → U ∈ TA, F (f ) is a linear map F (U)→ F (U).

Notation: for v ∈ F (U), F (f )(v) ≡ v .f , so that:
F (f ◦ g) = F (g) ◦ F (f ) reads v .(f ◦ g) = (v .f ).g

Consider an arrow ν : F−→G in RT (A):

T (A)

U

U

f

Vec

G (U)

G (U)

G (f )

Vec

F (U)

F (U)

F (f )

νU

νU

commutes,

so νU is also an arrow in Rep(TA).



Equivalence between RT (A) and Rep(TA)

We have thus defined a functor Ψ from RT (A) to Rep(TA).

This is a category equivalence, see Remark 5.4 of Hardiman
(2019). The argument is based on an early result in category
theory. See e. g. the book by B. Mitchell, Theory of categories
(1965), theorem 4.1 page 104.



A glimpse at Morita equivalence

Source: Etingof, Gelaki, Nikshych, Ostrik, Tensor categories, in
particular sections 7.12 and 7.16.

Consider M a module category over C.
Define D = FunC(M,M). It is a tensor category (via composition
of functors), with duality (notion of adjoint functor), and M is
also a module category over D.

C and D are said to be Morita equivalent. Then Z (C) and Z (D)
are equivalent categories.

In particular VecG and RepG are Morita equivalent, with
M = Vec .



What’s next?

I Higher genus compact surfaces, ground states and excitations:
uses the fact that Z (A) is a modular tensor category, Müger
(2003).

I Exact partition function for general string-net models,
Ritz-Zwilling, Fuchs, Simon, Vidal, PRB 109, 045130 (2024).

I Aspects of Morita equivalence, Lootens, Vancraeynest-De
Cuiper, Schuch, Verstraete, PRB 105, 085130 (2022).

I Categorical symmetries and dualities, Lootens, Delcamp,
Ortiz, Verstraete, PRX Quantum 4, 020357 (2023).


