Introduction to fusion categories

Benoît Douçot

Les Houches, April, 2024

 Original framework for mathematical constructions of topological field theories in 2+1 dimensions (Reshetikhin-Turaev (1991), Turaev-Viro (1992)).

Explicit lattice Hamiltonian formulations (Levin-Wen (2005)).

- Extensions to higher dimensions (next week lecture by C. Delcamp).
- Generalized symmetries and dualities (next week lecture by L. Lootens).
- Provides many new models (general constructions), and also helps to understand why things work: many calculations are replaced by drawings!

Various constructions of TQFT's in 2+1 dimensions

- Reshetikhin-Turaev construction requires a modular tensor category C. Defines a Hilbert space Z_{RT,C}(Σ) for any closed surface Σ and a vector Z_{RT,C}(M) ∈ Z_{RT,C}(∂M) for any smooth 3-manifold M. This is a non local construction, since it uses surgery of manifolds.
- Turaev-Viro (generalized by Barrett-Westbury (1996)) requires a (spherical) fusion category A as input. This construction is local, and it involves discretized path integrals.
- ► Key result: Z_{TV,A} = Z_{RT,Z(A)}, where Z(A) is the Drinfeld center of A (Reshetikhin-Virelizier (2010), Balsam-Kirillov (2010)).
- String nets: explicit construction of Z_{TV,A}(Σ) as ground-state of a local lattice Hamiltonian (Levin-Wen (2005)). Generalization of Kitaev's lattice gauge theory model of anyons (1997-2003).

1) Kitaev's lattice gauge model as a string net: magnetic picture

- 2) String nets from a fusion category
- 3) Kitaev's lattice gauge model as a string net: *electric* picture
- 4) Boundary excitations: the center construction

Consider a planar graph, and a finite group *G*. The Hilbert space of the model is $\mathcal{H} = \mathcal{H}_{ZFC}/\mathcal{N}$. \mathcal{H}_{ZFC} has an orthonormal basis of vectors $|\{g_{ij}\}\rangle$, with *ij* a link on the lattice, $g_{ij} = g_{ji}^{-1} \in G$, satisfying the zero flux condition: $g_{i_1i_2} g_{i_2i_3} \dots g_{i_li_1} = e$ for any plaquette bounded by *l* links.

Gauge transformations: Pick $h_i \in G$ for each site *i*. Define $(\mathcal{T}_h g)_{ij} = h_i g_{ij} h_j^{-1}$. This transformation preserves the zero flux condition on all plaquettes. \mathcal{N} is the subspace of \mathcal{H}_{ZFC} generated by vectors $|\{g_{ij}\}\rangle - |\{(\mathcal{T}_h g)_{ij}\}\rangle$.

$$\mathcal{H}_{\mathbf{ZFC}} = \mathcal{H}_{\mathbf{ZFC},\mathbf{S}} \oplus \mathcal{N}$$

So $\mathcal{H} = \mathcal{H}_{ZFC} / \mathcal{N} \cong \mathcal{H}_{ZFC,S} = \text{ ground-state of } (\mathrm{id} - \mathcal{P}_S).$

2D topological lattice gauge theories (II)

Key fact: On a simply connected planar graph, any fluxless gauge configuration is related to the trivial one $(g_{ij} = e)$ by a gauge transformation.

For a fluxless configuration, both paths give the same h_5 : a non-Abelian and discrete version of Stokes' theorem. Cohomological viewpoint on 2D topological theories.

 S^2 is simply connected, so $\mathcal{H}(S^2) = \mathbb{C}$. There exists a topological ground-state degeneracy on positive genus closed compact surfaces Σ , i.e. dim $\mathcal{H}(\Sigma) \ge 2 \longrightarrow$ idea of topological quantum computation (Kitaev (1997-2003)).

Sphere with *n* holes

fluxless condition through complement of the holes: $k_1 g_1 k_1^{-1} \cdots k_n g_n k_n^{-1} = e$ Gauge transformations:

$$k_i \rightarrow h_0 k_i h_i^{-1}$$

 $g_i \rightarrow h_i g_i h_i^{-1}$

Setting $h_i = h_0 k_i$, we get $k_i = e$. So $\mathcal{H}(S^2, n) = \mathcal{H}_{\text{ZFC}}/\mathcal{N}$, where \mathcal{H}_{ZFC} is spanned by basis vectors $|g_1, \dots, g_n\rangle$ such that $g_1 g_2 \cdots g_n = e$, and \mathcal{N} is generated by nul vectors $|g_1, \dots, g_n\rangle - |h g_1 h^{-1}, \dots, h g_n h^{-1}\rangle$ associated to gauge transformations.

If n = 1, dim $(\mathcal{H}(S^2, 1))$ is equal to the number of conjugacy classes of G. For $n \ge 2$, we can fix conjugacy classes $\operatorname{Cl}_1, \operatorname{Cl}_2, ..., \operatorname{Cl}_n$ attached to the holes.

 $\mathcal{H}(S^2, n, \operatorname{Cl}_1, ..., \operatorname{Cl}_n) = \operatorname{Hom}_{Z(\operatorname{Vec}_G)}(1, (X(\operatorname{Cl}_1), \operatorname{id}) \otimes \cdots \otimes (X(\operatorname{Cl}_n), \operatorname{id}))$

2D topological lattice gauge theories (III)

PHYSICAL REVIEW A 67, 022315 (2003)

Anyons from nonsolvable finite groups are sufficient for universal quantum computation

Carlos Mochon^{*} Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 (Received 1 October 2002; published 28 February 2003)

We present a constructive proof that anyonic magnetic charges with fluxes in a nonsolvable finite group can perform universal quantum computations. The gates are built out of the elementary operations of braiding, fusion, and vacuum pair creation, supplemented by a reservoir of ancillas of known flux. Procedures for building the ancillar cerestroit and for correcting leakage are also described. Finally, a universal qudit gate exwhich is ideally suited for anyons, is presented. The gate set consists of classical computation supplemented by measurements of the X operator.

FIG. 1. Exchanging two anyons.

FIG. 2. Conjugating a pair of anyons.

Proposed implementation with Josephson circuits

G is the permutation group S_3 Douçot, loffe, Vidal, PRB 69, 214501 (2005)

- Kitaev's lattice gauge model as a string net: *magnetic* picture
 String nets from a fusion category
- 3) Kitaev's lattice gauge model as a string net: *electric* picture
- 4) Boundary excitations: the center construction

"Since a category consists of arrows, our subject could also be described as learning how to live without elements, using arrows instead." S. Mac Lane, Categories for the working mathematician (1971)

$$\begin{aligned} &f \in \operatorname{Hom}(\mathrm{b},\mathrm{c}), \ g \in \operatorname{Hom}(\mathrm{a},\mathrm{b}) \\ &f \circ g \in \operatorname{Hom}(\mathrm{a},\mathrm{c}) \\ &\operatorname{id}_{a} \in \operatorname{Hom}(a,a), \ \operatorname{id}_{b} \in \operatorname{Hom}(b,b) \\ &g \circ \operatorname{id}_{a} = g = \operatorname{id}_{b} \circ g \end{aligned}$$

Example: Consider an ordered set (S, \leq) . It defines a category C, whose objects are elements of S and Hom(a, b) contains a unique arrow if $a \leq b$, and is empty otherwise.

\mathbb{C} -linear categories

▶ Hom(a, b) is a finite dimensional vector space over C, such that composition of arrows is C-bilinear:

$$h \circ (\lambda f + \mu g) = \lambda (h \circ f) + \mu (h \circ g)$$

 $(\lambda h + \mu k) \circ f = \lambda (h \circ f) + \mu (k \circ g)$

$$egin{aligned} f,g \in \operatorname{Hom}(a,b)\ h,k \in \operatorname{Hom}(b,c)\ \lambda,\mu \in \mathbb{C}. \end{aligned}$$

- Existence of a zero object 0, such that Hom(0,0) = 0 = {id₀}.
- Existence of direct sums $a \oplus b$.

 $p \circ i = \mathrm{id}_a, \ q \circ j = \mathrm{id}_b$ $q \circ i = 0, \ p \circ j = 0$ $i \circ p + j \circ q = \mathrm{id}_{a \oplus b}$

\mathbb{C} -linear categories (II)

Important consequence:

$$\operatorname{Hom}(\bigoplus_{\alpha} a_{\alpha}, \bigoplus_{\beta} b_{\beta}) \cong \bigoplus_{\alpha, \beta} \operatorname{Hom}(a_{\alpha}, b_{\beta})$$
$$f \mapsto \{f_{\alpha, \beta} = p_{\beta} \circ f \circ i_{\alpha}\}$$

Fusion categories

- ► Each object X is a finite direct sum of simple objects X_i : $X = \bigoplus_i n_i X_i$. Hom $(X_i, X_j) = 0$ if $i \neq j$ and (\mathbb{C} alg. closed) Hom $(X_i, X_i) = \mathbb{C}$ id_{X_i}.
- There are finitely many simple objects (modulo isomorphisms).

First contact with string net models

Plaquette of lattice gauge model \rightarrow site on the dual lattice. Zero flux condition $g_1 g_2 g_3 g_4 = e$ at each dual lattice site.

The Vec_G category

- ▶ Objects: G-graded vector spaces $V = \bigoplus_{g \in G} V_g$ over \mathbb{C}
- Arrows from V to W: Collection of linear maps $f_g: V_g \to W_g$

Simple objects: δ_g such that $(\delta_g)_h = 0$ if $g \neq h$ and $(\delta_g)_g = \mathbb{C}$.

First step: assign an object of Vec_G to each link of (dual) lattice. But: how to implement the zero flux condition at (dual) lattice sites?

 $g_1 g_2 g_3 g_4 = e \Leftrightarrow \operatorname{Hom}(\mathbb{C}, \delta_{g_1} \otimes \delta_{g_2} \otimes \delta_{g_3} \otimes \delta_{g_4}) \neq 0$ Each site satisfies the Vec_G fusion rules. Fusion rule for $\mathcal{A} = \operatorname{Vec}_{G}$ involves $\operatorname{Hom}(\mathbb{C}, \delta_{g_1} \otimes \delta_{g_2} \otimes \delta_{g_3} \otimes \delta_{g_4})$. For a general \mathcal{A} :

 \triangleright \mathbb{C} is replaced by a unit object, denoted by **1**.

- We need a notion of tensor product. In Vec_G : $(V \otimes W)_g = \bigoplus_h (V_h \otimes W_{h^{-1}g})$.
- ▶ A link is adjacent to two sites. We need to swap orientation: $g_{ij} \rightarrow g_{ji} = g_{ij}^{-1}$ becomes $V_{ij} \rightarrow V_{ij}^*$: notion of duality.

Tensor products: associativity constraints

Tensor products: the unit object

Mac Lane Coherence theorem: Consider words composed of objects in \mathcal{A} , tensor product signs, and parentheses. Pick a pair of words, involving the same sequences of objects, but differing in terms of location of parentheses and of possible of ocurrences of **1**. Example: $(((a \otimes \mathbf{1}) \otimes (b \otimes c)) \otimes \mathbf{1}) \otimes d$ and $a \otimes (b \otimes (c \otimes d))$. It is possible to connect them by several different sequences of arrows, involving α , λ and ρ isomorphisms. Then: all such sequences induce the same arrow between these two words.

Duality (I)

 V^* is a left dual for V if we have two arrows $ev_V : V^* \otimes V \to \mathbf{1}$ and $coev_V : \mathbf{1} \to V \otimes V^*$ such that (rigidity):

 $V \xrightarrow{\lambda_V^{-1}} \mathbf{1} \otimes V \xrightarrow{\operatorname{coev} \otimes \operatorname{id}} (V \otimes V^*) \otimes V \xrightarrow{\alpha^{-1}} V \otimes (V^* \otimes V) \xrightarrow{\operatorname{id} \otimes \operatorname{ev}} V \otimes \mathbf{1} \xrightarrow{\rho_V} V = \operatorname{id}_V$

$$V \xrightarrow{\rho_{V^*}^{-1}} V^* \otimes \mathbf{1} \xrightarrow{\operatorname{id} \otimes \operatorname{coev}} V^* \otimes (V \otimes V^*) \xrightarrow{\alpha} (V^* \otimes V) \otimes V^* \xrightarrow{\operatorname{ev} \otimes \operatorname{id}} \mathbf{1} \otimes V^* \xrightarrow{\lambda_{V^*}} V^* = \operatorname{id}_{V^*}.$$

Vec: (finite dimensional vector spaces). $ev_V : V^* \otimes V \to \mathbb{C}$ sends $\varphi \otimes v$ into $\varphi(v)$. Pick dual bases $\{\alpha_i\}$, $\{e_j\}$ for V^* and V, i.e. $\alpha_i(e_j) = \delta_{ij}$. $coev_V : \mathbb{C} \to V \otimes V^*$ sends $1 \in \mathbb{C}$ into $\sum_i e_i \otimes \alpha_i$. Rigidity: $v = \sum_i \alpha_i(v) e_i$ and $\varphi = \sum_i \varphi(e_i) \alpha_i$ for any $v \in V$ and $\varphi \in V^*$.

Vec_G: $\mathbf{1} = \delta_{e}$. $(V^*)_g = (V_{g^{-1}})^*$.

Graphical representation of duality axiom

Extended coherence theorem: Consider words composed of objects in \mathcal{A} , tensor product signs, and parentheses. Pick a pair of words, differing in terms of location of parentheses and of possible of ocurrences of **1**, but also via possible annihilation (resp. creation) of a^*a (resp aa^*) pairs. It is possible to connect them by several different sequences of arrows, involving α , λ , ρ isomorphisms, and ev and coev arrows. Then: all such sequences induce the same arrow between these two words.

Example:

 $((a \otimes (b \otimes 1)) \otimes c^*) \otimes ((c \otimes d) \otimes 1) \rightarrow (a \otimes e) \otimes ((e^* \otimes b) \otimes d)$

 $((a \otimes (b \otimes 1)) \otimes c^*) \otimes ((c \otimes d) \otimes 1) \rightarrow (a \otimes e) \otimes ((e^* \otimes b) \otimes d)$

Expression of arrows from simple objects

 $A = \bigoplus_{i} n_{i}X_{i}, \text{ where } n_{i} = \dim \operatorname{Hom}(A, X_{i}) = \dim \operatorname{Hom}(X_{i}, A).$ Consider dual bases $\{u_{i\alpha}\}$ for $\operatorname{Hom}(X_{i}, A)$, and $\{v_{i\alpha}\}$ for $\operatorname{Hom}(A, X_{i})$, i.e. $v_{i\alpha} \circ u_{i\alpha} = \delta_{ij} \operatorname{id}_{X_{i}}.$ Then:

$$\mathrm{id}_{\mathcal{A}} = \sum_{i,\alpha} u_{i\alpha} \circ v_{i\alpha}$$

Consider $f : A \longrightarrow B$. $f = f \circ id_A = \sum_{i,\alpha} (f \circ u_{i\alpha}^{(A)}) \circ v_{i\alpha}^{(A)}$. $f \circ u_{i\alpha}^{(A)} = \sum_{\mu} u_{i\mu}^{(B)} \circ (v_{i\mu}^{(B)} \circ f \circ u_{i\alpha}^{(A)})$. $v_{i\mu}^{(B)} \circ f \circ u_{i\alpha}^{(A)} = \langle \mu | F_i^f | \alpha \rangle id_{X_i}$

$$f \circ u_{i\alpha}^{(A)} = \sum_{\mu} \left\langle \mu | F_i^f | \alpha \right\rangle u_{i\mu}^{(B)}$$

F symbols for associativity isomorphisms

$$A = (X_i \otimes X_j) \otimes X_k$$
, $B = X_i \otimes (X_j \otimes X_k)$ and $f = a_{X_i, X_j, X_k}$.

Definition of $\mathcal{H}_{\mathrm{FR}}$

Generalization of $\mathcal{H}_{\rm ZFC}$, defined for $\mathcal{A} = {\rm Vec}_{\mathcal{G}}$. Inspired directly by A. Kirillov, Jr., arXiv:1106.6033.

States $|\{g_{ij}\}\rangle$ are replaced by $|\{V(\mathbf{e}), \varphi(\mathbf{v})\}\rangle$.

- For each edge **e** choose an object $V(\mathbf{e})$ in \mathcal{A} .
- Arrow reversal: $V(\bar{\mathbf{e}}) = V(\mathbf{e})^*$
- ► For each vertex v choose $\varphi(v) \in \operatorname{Hom}(\mathbf{1}, V(\mathbf{e}_1) \otimes ... \otimes V(\mathbf{e}_n)).$

Notion of isomorphism between $\{V(\mathbf{e}), \varphi(\mathbf{v})\}$ and $\{V'(\mathbf{e}), \varphi'(\mathbf{v})\}$: Defined by a collection of isomorphisms $f_{\mathbf{e}_j} : V(\mathbf{e}_j) \to V'(\mathbf{e}_j)$, such that: $\varphi'(\mathbf{v}) = (f_{\mathbf{e}_1} \otimes ... \otimes f_{\mathbf{e}_n}) \circ \varphi(\mathbf{v})$.

Cyclic permutation symmetry around a vertex (I)

$$\begin{array}{cccc} \operatorname{Hom}(\mathbf{1}, V_{1} \otimes \ldots \otimes V_{n-1} \otimes V_{n}) & \stackrel{Z}{\to} & \operatorname{Hom}(\mathbf{1}, V_{n} \otimes V_{1} \otimes \ldots \otimes V_{n-1}) \\ & (f_{1} \otimes \ldots \otimes f_{n-1} \otimes f_{n}) \circ . & (f_{n} \otimes f_{1} \otimes \ldots \otimes f_{n-1}) \circ . \\ & \operatorname{Hom}(\mathbf{1}, V_{1}' \otimes \ldots \otimes V_{n-1}' \otimes V_{n}') & \stackrel{Z'}{\to} & \operatorname{Hom}(\mathbf{1}, V_{n}' \otimes V_{1}' \otimes \ldots \otimes V_{n-1}') \\ \end{array}$$

Cyclic permutation symmetry around a vertex: $Z^n = id$

Goal: define local updates of $\{V(\mathbf{e}), \varphi(\mathbf{v})\}$, which do not change the state of the system outside of a finite connected region.

How to assign a meaning to this notion?

Definition of the \mathcal{N} subspace (II)

where ψ is given by:

${\mathcal H}$ on a sphere

 $\begin{aligned} \mathcal{H}(S^2 - \{p\}) &= \mathcal{H}(\mathbb{R}^2) = \operatorname{Hom}_{\mathcal{A}}(\mathbf{1}, \mathbf{1}) = \mathbb{C} \\ \pi : \mathcal{H}(S^2 - \{p\}) &\longrightarrow \mathcal{H}(S^2) \text{ surjective so } \dim \mathcal{H}(S^2) \leq \mathbf{1}. \end{aligned} \\ \text{When do we have } \dim \mathcal{H}(S^2) = \mathbf{1}? \\ \text{A: Constraint near } p \text{ should always be satisfied.} \end{aligned}$

Equality holds when \mathcal{A} is spherical, i.e. when $\operatorname{tr}_L(f) = \operatorname{tr}_L(f)$ for any arrow f.

Dimension of objects

$$(3.4) \qquad \qquad = \sum_{i \in \operatorname{Irr}(\mathcal{A})} d_i \quad \left| \begin{array}{c} i \\ \end{array} \right|$$

(3.5)

(3.6)

(3.7)

Then one has the following relations in $H^{string}(\Sigma)$:

$$\begin{array}{c} & & = \mathcal{D}^2 \\ V_1 & & V_n \\ & & \\ & & \\ & & \\ & & \\ V_1 & & V_n \\ & &$$

Kirillov (2011)

The Levin-Wen projector (I)

 $B_{p}\psi - \psi \in \mathcal{N}(\Sigma)$ for any $\psi \in \mathcal{H}(\Sigma - \{p\})$, so $\tilde{\pi}$ is surjective.

Description of Ker π $H^{string}(\Sigma) = H^{string}(\Sigma - p) / \left\langle \left\langle \stackrel{p}{\bullet} \right\rangle - \left\langle \stackrel{p}{\bullet} \right\rangle \right\rangle$

Kirillov (2011)

If $\psi \in \operatorname{Ker} \pi$ then $B_{\rho}\psi = 0$, so $\tilde{\pi}$ is injective.

The Levin-Wen projector (II)

Models for Gapped Boundaries and Domain Walls

Fig. 3. The action of the plaquette operator $B_{\mathbf{p}}^k$: a) the initial state of the plaquette; b) a symbolic representation of the operator $B_{\mathbf{p}}^k$ applied to it; c) the loop is partially fused using Eq. (12) (some labels and the overall factor are not shown); d) the corner triangles have been evaluated to trivalent vertices (summation over j'_p , α'_q is assumed)

A. Kitaev and Liang Kong, Comm. Math. Phys. 313, 351 (2012)

359

- 1) Kitaev's lattice gauge model as a string net: magnetic picture
- 2) String nets from a fusion category
- 3) Kitaev's lattice gauge model as a string net: *electric* picture
- 4) Boundary excitations: the center construction

On a given link, associated Hilbert space is $\mathbb{C}[G] = \bigoplus_{g \in G} \mathbb{C} |g\rangle$. Left action of G on $\mathbb{C}[G]$: $L_h |g\rangle = |hg\rangle$. Right action of G on $\mathbb{C}[G]$: $R_h |g\rangle = |gh^{-1}\rangle$. These two actions commute.

Gauge transformation: $\mathcal{T}(h_i, h_j) = L_{h_i} \circ R_{h_j}$

Gauge invariant constraint at site *i*: project on singlet subspace of $\bigotimes_j \mathbb{C}[G]_{ij}$ for the L_{h_i} action, equivalent to choose an element in $\operatorname{Hom}_{\operatorname{Rep}_G}(\mathbb{C},\bigotimes_j \mathbb{C}[G]_{ij})$, i.e. to satisfy Rep_G fusion rule at site *i*.

Objects: Finite dimensional representations (E, ρ) of G. Arrows: $\operatorname{Hom}_{\operatorname{Rep}_{G}}((E, \rho), (F, \sigma))$ is composed of linear maps $f : E \longrightarrow F$ such that

Tensor product: $(E, \rho) \otimes (F, \sigma) \cong (E \otimes F, \rho \otimes \sigma)$. Unit object: $\mathbf{1} = (\mathbb{C}, \mathrm{id})$.

 $\operatorname{Hom}_{\operatorname{Rep}_{G}}(\mathbf{1},(E,\rho)) \cong \{v \in E, \rho_{g}(v) = v, \forall g \in G\}: \text{ Invariant subspace of } E \text{ under } \rho.$

Duality: $(E, \rho)^* = (E^*, \rho^*)$, where $\rho_g^* = \rho_{g^{-1}}^T$. Exercise: Check that $ev_E : E^* \otimes E \to \mathbb{C}$ and $coev_E : \mathbb{C} \to E \otimes E^*$ defined in Vec also define arrows in Rep_G .

Simple objects: Finite dimensional irreducible representations (E_i, ρ_i) of G.

Classical decomposition of $\mathbb{C}[G]$: As a vector space: $\mathbb{C}[G] = \bigoplus_i E_i \otimes E_i^*$ Left action: $\bigoplus_i (E_i, \rho_i) \otimes (E_i^*, \operatorname{id})$ Right action: $\bigoplus_i (E_i, \operatorname{id}) \otimes (E_i^*, \rho_i^*)$ Used in Buerschaper and Aguado PRB 80, 155136 (2009).

Fluxless constraint in $\operatorname{Rep}_{\mathcal{G}}(I)$

$$\mathcal{H} = \left(\bigotimes_{i=1}^{n} E_{i}\right) \bigotimes \left(\bigoplus_{\{g_{ij}\}} \mathbb{C} | \{g_{ij}\}\right)$$

 $\begin{array}{l} \operatorname{Rep}_{G} \text{ string-net prescription:} \\ \text{First apply gauge invariance at vertices, to get } \mathcal{H}_{FR}, \text{ using:} \\ \mathcal{T}(\{h_i\})(v \otimes |\{g_{ij}\}\rangle) = (\otimes_i \rho_{i,h_i})(v) \otimes \left|\{h_i \, g_{ij} \, h_j^{-1}\}\right\rangle \\ \text{Then form } \mathcal{H}_{FR}/\mathcal{N} \cong \operatorname{Hom}_{\operatorname{Rep}_{G}}(\mathbf{1}, \bigotimes_i (E_i, \rho_i)). \end{array}$

Question: Is this equivalent to imposing the fluxless constraint: $g_{12} g_{23} \dots g_{n-1,n} g_{n1} = e$? Fluxless constraint in $\operatorname{Rep}_{G}(\mathsf{II})$

$$\mathcal{H} = \left(\bigotimes_{i=1}^{n} E_{i}\right) \bigotimes \left(\bigoplus_{\{g_{ij}\}} \mathbb{C} |\{g_{ij}\}\rangle\right)$$

Fluxless constraint: $g_{12} g_{23} \dots g_{n-1,n} g_{n1} = e$ defines \mathcal{H}_{ZFC} . Gauge action: $\mathcal{T}(\{h_i\})(\mathbf{v} \otimes |\{g_{ij}\}\rangle) = (\otimes_i \rho_{i,h_i})(\mathbf{v}) \otimes |\{h_i g_{ij} h_j^{-1}\}\rangle$

In fluxless sector, we can bring $\{g_{ij}\}$ to the trivial configuration $\{g_{ij} = e\}$ by a gauge transformation, which has for stabilizor $\{h_i = h\}$, i.e. the diagonal subgroup in $G_1 \times ... \times G_n$.

Invariant states in \mathcal{H}_{ZFC} are in 1 to 1 correspondence with invariant states in $\bigotimes_i E_i$ under $\rho = \bigotimes_i \rho_i$, that is $\operatorname{Hom}_{\operatorname{Rep}_G}(\mathbf{1}, \bigotimes_i (E_i, \rho_i)).$

This is the expected image subspace of the plaquette projector in the Rep_{G} string-net model.

Morita equivalence

Models for Gapped Boundaries and Domain Walls

Alexei Kitaev¹, Liang Kong²

¹ California Institute of Technology, Pasadena, CA 91125, USA. E-mail: kitaev@iqi.caltech.edu

² Institute for Advanced Study, Tsinghua University, Beijing 100084, China. E-mail: kong.fan.liang@gmail.com

Received: 24 May 2011 / Accepted: 18 January 2012 Published online: 7 June 2012 – © Springer-Verlag 2012

Abstract: We define a class of lattice models for two-dimensional topological phases with boundary such that both the bulk and the boundary excitations are gapped. The bulk part is constructed using a unitary tensor category C as in the Levin-Wen model, whereas the boundary is associated with a module category over C. We also consider domain walls (or defect lines) between different bulk phases. A domain wall is transparent to bulk excitations if the corresponding unitary tensor categories are Morita equivalent. Defects of higher codimension will also be studied. In summary, we give a dictionary between physical ingredients of lattice models and tensor-categorical notions.

Comm. Math. Phys. 313, 351 (2012)

Module categories: associativity constraints

Module categories: behavior of the unit object

$$\begin{array}{ccc} X \otimes (\mathbf{1} \otimes M) & \stackrel{\alpha \times \mathbf{1}M}{\longrightarrow} & (a \otimes \mathbf{1}) \otimes c \\ & id_X & & \rho_X \otimes id_M \\ & \chi \otimes M & \stackrel{id}{\longrightarrow} & X \otimes M \end{array}$$

Important example of module category: $\mathcal{M} = \operatorname{Vec}$ is a module category over $\mathcal{C} = \operatorname{Vec}_{\mathcal{G}}$ and also over $\mathcal{D} = \operatorname{Rep}_{\mathcal{G}}$.

Module categories and line defects

Fig. 8. A neighborhood of a defect line between two topological phases, where $i, j, k, l \in C, \lambda_1, \dots, \lambda_9 \in M, i', j', k', l' \in D$.

Kitaev and Kong (2012)

- 1) Kitaev's lattice gauge model as a string net: magnetic picture
- 2) String nets from a fusion category
- 3) Kitaev's lattice gauge model as a string net: *electric* picture
- 4) Boundary excitations: the center construction

Point excitations in string-net models

Flux: Vec_G fusion rule violated at a dual lattice site. Charge: Rep_G fusion rule violated at an original lattice site.

Definition of $Z(\mathcal{A})(I)$

Objects of $Z(\mathcal{A})$ are pairs (X, σ) with X object in \mathcal{A} and σ is an half-braiding, i.e. a collection of arrows $\sigma_V : V \otimes X \longrightarrow X \otimes V$ defined for any object V in \mathcal{A} , subject to two conditions: Naturality:

An arrow f of Z(A) from (X, σ) to (Y, τ) is an arrow $f \in \operatorname{Hom}_{\mathcal{A}}(X, Y)$ such that:

$Z(\mathcal{A})$ has tensor products

 $(X, \sigma) \otimes (Y, \tau) = (X \otimes Y, \tau.\sigma)$, where $\tau.\sigma$ is the half-braiding defined by:

Exercises:

- Check that τ.σ satisfies the two constraints (naturality and compatibility with tensor product) involved in the definition of a half-braiding.
- ► For $f : (X, \sigma) \to (X', \sigma')$, $g :\to (Y, \tau), (Y', \tau')$, check that $f \otimes g : (X, \sigma) \otimes (Y, \tau) \to (X', \sigma') \otimes (Y', \tau')$ also defines an arrow in Z(A).

Associativity of tensor product and unit object in Z(A)

$$((X,\rho)\otimes(Y,\sigma))\otimes(Z,\tau) \qquad (X,\rho)\otimes((Y,\sigma)\otimes(Z,\tau))$$
$$\stackrel{||\mathcal{Q}}{\longrightarrow} ((X\otimes Y)\otimes Z,\tau.(\sigma.\rho)) \xrightarrow{\alpha_{X,Y,Z}} (X\otimes(Y\otimes Z),(\tau.\sigma).\rho)$$

Exercises:

- Check that $\alpha_{X,Y,Z}$ defines an arrow from $((X \otimes Y) \otimes Z, \tau.(\sigma.\rho))$ to $(X \otimes (Y \otimes Z), (\tau.\sigma).\rho)$ in $Z(\mathcal{A})$.
- Check that naturality of α and pentagon identify transfer from A to Z(A).
- Check that $(1, \tau)$ with $\tau_V = I_V^{-1} \circ r_V : V \otimes 1 \longrightarrow V \longrightarrow 1 \otimes V$ is an object in $Z(\mathcal{A})$.
- Check that (1, τ) is a unit object with respect to the tensor product in Z(A).

Description of $Z(\operatorname{Vec}_G)(I)$

Naturality: (X, σ) is determined by a collection of linear maps $\sigma_{g,k} : X_k \cong (\delta_g \otimes X)_{gk} \longrightarrow (X \otimes \delta_g)_{gk} \cong X_{gkg^{-1}}$ Minimal objects of $Z(\operatorname{Vec}_G)$ are supported on given conjugacy class $\operatorname{Cl}(k)$ of G.

Compatibility with tensor product: $\sigma_{gh,k} = \sigma_{g,hkh^{-1}} \circ \sigma_{g,k}$ If $g, h \in \text{Stab}(k)$, $\sigma_{gh,k} = \sigma_{g,k} \circ \sigma_{g,k}$, so we get a representation ρ of Stab(k), acting on a \mathbb{C} vector space E.

Description of (X, σ) : Pick a set of representatives $\{g_i\}$ so that any element in Cl(k) may be uniquely written as $g_i k g_i^{-1}$. Then:

$$egin{array}{rcl} X_{g_ikg_i^{-1}} &=& \mathbb{C}e_i\otimes E \ \sigma_h(e_i\otimes v) &=& e_j\otimes
ho(s)(v) \ hg_i &=& g_js, s\in \mathrm{Stab}(k) \end{array}$$

Description of $Z(\operatorname{Vec}_G)$ (II)

Arrows \hat{f} from (X, σ) to (Y, τ) :

- ▶ If (X, σ) and (Y, τ) are supported on different conjugacy classes: Hom_{Z(Vec_G)} $((X, \sigma), (Y, \tau)) = 0$.
- ► If (X, σ) and (Y, τ) are both supported on Cl(k): Hom_{Z(Vec_G)} $((X, \sigma), (Y, \tau)) = Hom_{Rep(Stab(k))}(\rho_{\sigma}, \rho_{\tau}).$

Magnetic flux excitations in $Z(\operatorname{Vec}_G)$

Magnetic flux excitations correspond to choosing the identity representation of $\operatorname{Stab}(k)$: $E = \mathbb{C}$ and $\operatorname{id}(s) = \operatorname{id}_{\mathbb{C}}$ for all $s \in \operatorname{Stab}(k)$. The corresponding object $X(\operatorname{Cl}(k)) = \bigoplus_{g \in \operatorname{Cl}(k)} \mathbb{C} |g\rangle$. Then:

$$\sigma_h(|g\rangle) = \left|hgh^{-1}\right\rangle$$

Tensor product of magnetic flux excitations:

 $(X(Cl_1), id) \otimes \cdots \otimes (X(Cl_n), id)$ is associated to the *G*-graded vector space $X = \bigoplus_{g_i \in C_i} \mathbb{C} | g_1, ..., g_n \rangle$. The grading is defined by $|g_1, ..., g_n \rangle \in X_{g_1...g_n}$.

$$\sigma_{h}\left|g_{1},...,g_{n}
ight
angle=\left|hg_{1}h^{-1},...,hg_{n}h^{-1}
ight
angle$$

 $\operatorname{Hom}_{Z(\operatorname{Vec}_G)}(1, (X(\operatorname{Cl}_1), \operatorname{id}) \otimes \cdots \otimes (X(\operatorname{Cl}_n), \operatorname{id}))$

Motivation: Space of states on a sphere with *n* punctures, carrying magnetic flux excitations associated to Cl_1, \dots, Cl_n conjugacy classes.

Define
$$(X, \sigma) = (X(Cl_1), id) \otimes \cdots \otimes (X(Cl_n), id).$$

$$\begin{split} \operatorname{Hom}_{Z(\operatorname{Vec}_G)}(1,(X,\sigma)) &= \operatorname{Hom}_{Z(\operatorname{Vec}_G)}(1,(X_e,\sigma_e)) \\ &= \operatorname{Hom}_{\operatorname{Rep}(G)}(\operatorname{id},\sigma_e) \\ &= \{v \in X_e | \forall h \in G, \sigma_h(v) = v\} \end{split}$$

▶ Basis for X_e : { $|g_1, ..., g_n\rangle | g_i \in Cl_i, g_1...g_n = e$ }.

• σ_h permutes basis vectors.

 Dimension of invariant vectors subspace = number of orbits of basis vectors under σ_h permutations (gauge transformations) = original lattice gauge theory count. Developed in Lan and Wen (PRB (2014)). General proof for \mathcal{A} spherical fusion category given by Popa, Shlyakhtenko, Vaes (2018).

Useful, because $\operatorname{Rep}(TA)$ is semi-simple, i.e. any representation of T(A) can be decomposed as a direct sum of irreducible representations (Müger (2003)).

I will follow the presentation of Hardiman (arXiv:1911.07271). He introduces a category $\mathcal{T}(\mathcal{A})$ called the tube category of \mathcal{A} , and a related category $\mathcal{RT}(\mathcal{A})$. He shows separately equivalence between $Z(\mathcal{A})$ and $\mathcal{RT}(\mathcal{A})$ and then between $\mathcal{RT}(\mathcal{A})$ and $\operatorname{Rep}(\mathcal{TA})$.

The tube category $\mathcal{T}(\mathcal{A})$

- Objects are the same as the objects of A.
- Arrows are different: Hom_{T(A)}(X, Y) = ⊕_R Hom_A(R ⊗ X, Y ⊗ R).
 TA = Hom_{T(A)}(⊕_R, ⊕_S) = ⊕_{R,S} Hom_A(R ⊗ S, S ⊗ R).
 Arrow composition: g ∘ f is given by:

The $\mathcal{RT}(\mathcal{A})$ category

Objects of $\mathcal{RT}(\mathcal{A})$: contravariant functors F from $\mathcal{T}(\mathcal{A})$ to Vec. Example: Hom(., Z), where Z is a fixed object in $\mathcal{T}(\mathcal{A})$.

 $\mathcal{T}(\mathcal{A})$ Vec Vec $\begin{array}{ccc} X & F(X) & \operatorname{Hom}(X, Z) \\ u \\ \downarrow & F(u) \\ \end{array} \quad . \circ u \\ \end{array}$ F preserves composition of arrows: $F(u \circ v) = F(v) \circ F(u)$ $F(Y) = \operatorname{Hom}(Y, Z)$ Arrows of $\mathcal{RT}(\mathcal{A})$: natural transformations ν between functors. $\mathcal{T}(\mathcal{A})$ Vec Vec $\begin{array}{ccc} X & F(X) & \xrightarrow{\nu_X} & G(X) \\ u & & F(u) & & G(u) \\ y & & F(Y) & \xrightarrow{\nu_Y} & G(X) \end{array}$

Categories A and B are said to be equivalent if there exists a functor Φ from A to B such that:

- For all pairs of objects A, A' in A,
 Φ : Hom_A(A, A') → Hom_B(Φ(A), Φ(A')) is bijective. Φ is said to be fully faithful.
- For any object B in B, there exists an object A in A such that B is isomorphic to Φ(A). Φ is said to be essentially surjective.

Equivalence between Z(A) and $\mathcal{RT}(A)$ (I)

Wanted: a functor Φ from Z(A) to $\mathcal{RT}(A)$. Start from an object (X, τ) in Z(A). We define from it an object $F = \Phi(X, \tau)$ in $\mathcal{RT}(A)$, i.e a functor from $\mathcal{T}(A)$ to Vec.

Exercise: Given G, H, R, S, T simple objects in A and λ, μ so that

 $\begin{array}{ll} \lambda \in \operatorname{Hom}_{\mathcal{A}}(G \otimes S, R \otimes G) & \operatorname{defines} & \lambda_G \in \operatorname{Hom}_{\mathcal{T}(\mathcal{A})}(S, R) \\ \mu \in \operatorname{Hom}_{\mathcal{A}}(H \otimes T, S \otimes H) & \operatorname{defines} & \mu_H \in \operatorname{Hom}_{\mathcal{T}(\mathcal{A})}(T, S) \end{array}$

Check that $F(\lambda_G \circ \mu_H) = F(\mu_H) \circ F(\lambda_G)$, i.e. F is a functor from $\mathcal{T}(\mathcal{A})$ to Vec.

Should also be discussed: action of Φ on arrows in Z(A) gives arrows in $\mathcal{RT}(A)$.

For a proof that Φ is an equivalence between Z(A) and $\mathcal{RT}(A)$, see section 7 of Hardiman (2019).

Equivalence between $\mathcal{RT}(\mathcal{A})$ and $\operatorname{Rep}(\mathcal{TA})$

Define $U = \bigoplus S$, object in $\mathcal{T}(\mathcal{A})$. Then: $T\mathcal{A} = \operatorname{Hom}_{\mathcal{T}(\mathcal{A})}(U, U)$. For F object of $\mathcal{RT}(\mathcal{A})$, i.e. a functor from $\mathcal{T}(\mathcal{A})$ to Vec, F(U) is a \mathbb{C} vector space, on which $T\mathcal{A}$ acts by right multiplication: If $f : U \to U \in T\mathcal{A}$, F(f) is a linear map $F(U) \to F(U)$. Notation: for $v \in F(U)$, $F(f)(v) \equiv v.f$, so that: $F(f \circ g) = F(g) \circ F(f)$ reads $v.(f \circ g) = (v.f).g$

Consider an arrow $\nu : F \longrightarrow G$ in $\mathcal{RT}(\mathcal{A})$:

so ν_U is also an arrow in Rep(TA).

We have thus defined a functor Ψ from $\mathcal{RT}(\mathcal{A})$ to $\operatorname{Rep}(\mathcal{TA})$.

This is a category equivalence, see **Remark 5.4** of Hardiman (2019). The argument is based on an early result in category theory. See e. g. the book by B. Mitchell, *Theory of categories* (1965), theorem 4.1 page 104.

Source: Etingof, Gelaki, Nikshych, Ostrik, *Tensor categories*, in particular sections 7.12 and 7.16.

Consider \mathcal{M} a module category over \mathcal{C} . Define $\mathcal{D} = \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$. It is a tensor category (via composition of functors), with duality (notion of adjoint functor), and \mathcal{M} is also a module category over \mathcal{D} .

C and D are said to be Morita equivalent. Then Z(C) and Z(D) are equivalent categories.

In particular Vec_{G} and Rep_{G} are Morita equivalent, with $\mathcal{M} = \operatorname{Vec}$.

- Higher genus compact surfaces, ground states and excitations: uses the fact that Z(A) is a modular tensor category, Müger (2003).
- Exact partition function for general string-net models, Ritz-Zwilling, Fuchs, Simon, Vidal, PRB 109, 045130 (2024).
- Aspects of Morita equivalence, Lootens, Vancraeynest-De Cuiper, Schuch, Verstraete, PRB 105, 085130 (2022).
- Categorical symmetries and dualities, Lootens, Delcamp, Ortiz, Verstraete, PRX Quantum 4, 020357 (2023).