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Why categories?

» Original framework for mathematical constructions of
topological field theories in 241 dimensions
(Reshetikhin-Turaev (1991), Turaev-Viro (1992)).

> Explicit lattice Hamiltonian formulations (Levin-Wen (2005)).

» Extensions to higher dimensions
(next week lecture by C. Delcamp).

» Generalized symmetries and dualities
(next week lecture by L. Lootens).

» Provides many new models (general constructions), and also
helps to understand why things work: many calculations are
replaced by drawings!



Various constructions of TQFT's in 2+1 dimensions

» Reshetikhin-Turaev construction requires a modular tensor
category C. Defines a Hilbert space Zgt ¢(X) for any closed
surface X and a vector Zgrr (M) € Zrr c(0M) for any
smooth 3-manifold M. This is a non local construction, since
it uses surgery of manifolds.

» Turaev-Viro (generalized by Barrett-Westbury (1996))
requires a (spherical) fusion category A as input. This
construction is local, and it involves discretized path integrals.

> Key result: Zpv 4 = Zgy z(4), where Z(A) is the Drinfeld
center of A (Reshetikhin-Virelizier (2010), Balsam-Kirillov
(2010)).

» String nets: explicit construction of Zry 4(X) as ground-state
of a local lattice Hamiltonian (Levin-Wen (2005)).

Generalization of Kitaev's lattice gauge theory model of
anyons (1997-2003).



Outline

1)
2) String nets from a fusion category

3) Kitaev's lattice gauge model as a string net: electric picture
4) Boundary excitations: the center construction

Kitaev's lattice gauge model as a string net: magnetic picture



2D topological lattice gauge theories (Kitaev (2003))

Consider a planar graph, and a finite group G. The Hilbert space
of the model is H = Hypc/N. Hyzrc has an orthonormal basis of
vectors [{gj;}), with ij a link on the lattice, gj; = gjfl € G,
satisfying the zero flux condition: gj ;, giis.--8iji, = € for any
plaquette bounded by / links.

Gauge transformations: Pick h; € G for each site i. Define
(Thg)ij = higij hj_l. This transformation preserves the zero flux
condition on all plaquettes. A is the subspace of Hyrc generated

by vectors |{gj}) — [{(Thg)i})-

Hzre = Hyres ON
So H = Hypc /N = Hzros = ground-state of (id — Ps).



2D topological lattice gauge theories (I1)

Key fact: On a simply connected planar graph, any fluxless gauge
configuration is related to the trivial one (gj = e) by a gauge
transformation.

4 5
We wish to find { h;} such that
1 2 3 . higijhj~ = e
hs = ho go1 812 823 834 845
0 : - g hs = ho goe 867 &78 839 895

For a fluxless configuration, both paths give the same hs: a
non-Abelian and discrete version of Stokes’ theorem.
Cohomological viewpoint on 2D topological theories.

S2 is simply connected, so H(S2) = C. There exists a topological
ground-state degeneracy on positive genus closed compact surfaces
Y, i.e. dimH(X) > 2 — idea of topological quantum
computation (Kitaev (1997-2003)).



Sphere with n holes

fluxless condition through
complement of the holes:
kigiki ' kngnkyt =e
Gauge transformations:

ki — hokiht
g — higiht

Setting h; = hok;, we get k; = e. So H(S?,n) = Hzrc /N, where
‘Hyrc is spanned by basis vectors |gi, - -, g,) such that

g1 - g = e, and N is generated by nul vectors

lg1, -, 8n) — ‘hgl h=t,--- hg, h_1> associated to gauge
transformations.

If n =1, dim (#(52,1)) is equal to the number of conjugacy
classes of G. For n > 2, we can fix conjugacy classes

Cly, Cly, ..., Cl,, attached to the holes.

H(S?,n,Cly, ..., Cl,y) = Homz(veee) (L, (X(Cly),id)®- - -®(X(Cly), id))




2D topological lattice gauge theories (111)

PHYSICAL REVIEW A 67, 022315 (2003)
Anyons from nonsolvable finite groups are sufficient for universal quantum computation

Carlos Mochon™
Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125
(Received 1 October 2002; published 28 February 2003)

We present a constructive proof that anyonic magnetic charges with fluxes in a nonsolvable finite group can
perform universal quantum computations. The gates are built out of the elementary operations of braiding.
fusion, and vacuum pair creation, supplemented by a reservoir of ancillas of known flux. Procedures for
building the ancilla reservoir and for correcting leakage are also described. Finally, a universal qudit gate set,
which is ideally suited for anyons, is presented. The gate set consists of classical computation supplemented by

‘measurements of the X operator

FIG. 1. Exchanging two anyons. e ,"i‘, _

\ g

FIG. 2. Conjugating a pair of anyons.



Proposed implementation with Josephson circuits

G is the permutation group S3
Dougot, loffe, Vidal, PRB 69, 214501 (2005)
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Basics of categories

" Since a category consists of arrows, our subject could also be
described as learning how to live without elements, using arrows
instead.” S. Mac Lane, Categories for the working mathematician (1971)

f o g € Hom(a,c)
id, € Hom(a, a), idp € Hom(b, b)

a
f € Hom(b, c), g € Hom(a,b)
g
b goid; =g =idpog

~<

o

<>
—F—¢
Example: Consider an ordered set (S, <). It defines a category C,
whose objects are elements of S and Hom(a, b) contains a unique
arrow if a < b, and is empty otherwise.



C-linear categories

» Hom(a, b) is a finite dimensional vector space over C, such
that composition of arrows is C-bilinear:

f H
ho(Mf +pug) = Mhof)+u(hog) ,& € Hom(a, b)

B h, k € Hom(b, c)
(Ah-+puk)of = A(hof)+p(kog) 77

> Existence of a zero object 0, such that
Hom(0,0) = 0 = {ido}.

» Existence of direct sums a @ b.

id,
a\ /a poi=id, qoj=id
i P goi=0,poj=0

adb

/ \ iop+joq:ida@b
b idp b




C-linear categories (1)

Important consequence:

Hom(@aa,@bg) = @Hom(aa,bg)
o 3

a7ﬁ
f — {fag=psofoiy}

Fusion categories
» Each object X is a finite direct sum of simple objects X;:
X =@, niX;. Hom(Xj, X;) =0 if i # j and (C alg. closed)
Hom(X;j, Xj) = Cidx..
» There are finitely many simple objects (modulo isomorphisms).



First contact with string net models

Plaquette of lattice gauge model — site on the T
dual lattice. Zero flux condition g1 gog3ga =€ ~~1-®-[=~
at each dual lattice site.

The Vecg category
» Objects: G-graded vector spaces V = @gec Vg over C
» Arrows from V to W: Collection of linear maps fz : Vp; — W
» Simple objects: J, such that (), =0 if g # h and
(9g)g = C.

First step: assign an object of Vecg to each link of (dual) lattice.
But: how to implement the zero flux condition at (dual) lattice
sites?

818283 8s=e < Hom(C, 05y ® 0g, ® Gg; ® Jg, )70

Each site satisfies the Vecg fusion rules.



Further requests for A (input category) from string nets

Fusion rule for A = Vecg involves Hom(C, 04, 004, @04, @0, ). For
a general A:

» C is replaced by a unit object, denoted by 1.

» We need a notion of tensor product.
In Vecg: (V& W)z =@, (Vi ® Wj-1g.

P> A link is adjacent to two sites. We need to swap orientation:
gij — &ji = g,JTl becomes Vj; — \/,j notion of duality.



Tensor products: associativity constraints

®(b®c)—2  L(a@b)®c

f @l(g ® h) (f@g)‘@ h
a’®(b’®c’)M>(a’®b’)®c

(a®@ b) @ (c®d)

/\

®(b® (c®d)) ((a® b)® c)

®(b®c)®d)



Tensor products: the unit object

a®(1®c)¢>(a®l)®c
I'da®)\c /)a®/'dc
id
a®c _ a®c

Mac Lane Coherence theorem: Consider words composed of
objects in A, tensor product signs, and parentheses. Pick a pair of
words, involving the same sequences of objects, but differing in
terms of location of parentheses and of possible of ocurrences of 1.
Example: ((a®1)@(b®c))®1)®d and a® (b® (c®d)). Itis
possible to connect them by several different sequences of arrows,
involving o, A and p isomorphisms. Then: all such sequences
induce the same arrow between these two words.



Duality (1)

V* is a left dual for V if we have two arrows evy : V* @V — 1
and coevy : 1 — V ® V* such that (rigidity):

At coev®i o
V1oV S8 (e v g v O Ve (Ve V) 98
Vol v =idy

1d®ev

-1
Py *

v el id®coev vV ®(V® V*) i} (V* ® V) ® V* ev®id
1oV 2% v = idy..

Vec: (finite dimensional vector spaces). evy : V*® V — C sends
@ ® v into p(v). Pick dual bases {c;}, {ej} for V* and V, i.e.
ai(ej) = 0jj. coevy :C — V@ V*sends1 € Cinto ), 6 ® a;.
Rigidity: v =), ai(v)ej and ¢ =", ¢(ej) i for any v € V and
pe Vv

Vecg: 1 =06e. (V*)g = (Vp-1)".



Graphical representation of duality axiom

V*



Duality (II)

Extended coherence theorem: Consider words composed of objects
in A, tensor product signs, and parentheses. Pick a pair of words,
differing in terms of location of parentheses and of possible of
ocurrences of 1, but also via possible annihilation (resp. creation)
of a*a (resp aa*) pairs. It is possible to connect them by several
different sequences of arrows, involving «, A, p isomorphisms, and
ev and coev arrows. Then: all such sequences induce the same
arrow between these two words.

Example:
(a2 (b®1)c)@(ced)®l)— (a®e)® ((e* ® b) ® d)



Graphical representation

(a2 (b®1)c)@(ced)®l) — (a®e)® ((e* ® b) ® d)




Expression of arrows from simple objects

A = @, niX;, where n; = dim Hom(A, X;) = dim Hom(X;, A).
Consider dual bases {uj,} for Hom(X;, A), and {vi,} for
Hom(A, Xj), i.e. Viq © Ui = 0j;idx;. Then:

ida = E Uia © Via
i

consider f-A—> B. f=rfoida=Y, (Fou)ov®.
fou =2, u o(v (HB)ofou(A)).
Vi(f) ofo ufé\) = </”L‘F'f‘0‘> idx;



F symbols for associativity isomorphisms

k = Zr,u,y <r7H7V‘ng’q,(Jé,/3>




Definition of Hpr

Generalization of Hzpc, defined for A = Vecg. Inspired directly by
A. Kirillov, Jr., arXiv:1106.6033.
States |{gjj}) are replaced by |[{V/(e),¢(v)}).

» For each edge e choose an object V/(e) in A.

» Arrow reversal: V() = V(e)*

» For each vertex v choose
©(v) € Hom(1, V(e1) ® ... ® V(ep)).

Notion of isomorphism between {V/(e), o(v)} and {V'(e), ¥’ (v)}:
Defined by a collection of isomorphisms f.. : V/(e;) — V'(e;), such
that: ¢/ (v) = (fo, ® ... @ fo,) 0 (V).



Cyclic permutation symmetry around a vertex (1)

Hom(1, Vi ® ...®@ V,_1 ®@ V,) i) Hom(1,V, @ V1 ® ... ® V,,_1)

(A®.Qf-1®f)o. (h®A®..|®f—1)o0.

!

Hom(1L, V{ ®..® V/_; ® V) %5 Hom(1, V@ V{®...® V'_,)

Pivotal structure 6y : V — V**




Cyclic permutation symmetry around a vertex: Z" = id

Consequence of dy,gv, = 0y, @y, (set W =V1®@--- @ V,)

7"

¢ is a natural transformation rigidity



Definition of the A subspace (1)

Goal: define local updates of {V/(e), ©(v)}, which do not change
the state of the system outside of a finite connected region.

Vi Vy

X
> W

How to assign a meaning to this notion?

Vi Vo Vi Vy ViVoVaVy

[ W]

v | | v | = X




Definition of the A subspace (I1)

Vi Vs, Vi
X
’:9}1 S ¥1
X3 X1 E—— ”IZ)
’»)0}1 X &
Va4 V3 Va

where 9 is given by:

Vs

Vi Vo




‘H on a sphere

H(S? — {p}) = H(R?) = Homy(1,1) = C

7 H(S% — {p}) — H(S?) surjective so dim H(S?) < 1.
When do we have dim #(52) = 1?

A: Constraint near p should always be satisfied.

X
X* N
P = p X+
X+ X
trr(f) tr (f)

Equality holds when A is spherical, i.e. when tr;(f) = tr,(f) for
any arrow f.



Dimension of objects

X** X
5X X*= X* 5)—(1
X dx idy P

| _
! 2
(3.4) = >
I el A)

Then one has the following relations in H="""9(3):
(3.5) P =D

Va

(35)

(37)

Kirillov (2011)



The Levin-Wen projector (1)

o H(E - {p}) W—)H(Z)

e
=]
I -
\\‘3
-~
=

FIGURE 6. Operator B, Ime

By — ¢ € N(X) for any ¢ € H(X — {p}), so 7 is surjective.

Description of Ker

ey — (s ) <<n )-( b)}

Kirillov (2011)

If ¢ € Kerm then Byi) =0, so 7 is injective.



The Levin-Wen projector (II)

Models for Gapped Boundaries and Domain Walls 359

(b) (d)

Fig. 3. The action of the plaquette operator B;: a) the initial state of the plaquette; b) a symbolic represen-
tation of the operator Bg applied to it; ¢) the loop is partially fused using Eq. (12) (some labels and the overall

factor are not shown): d) the corner triangles have been evaluated to trivalent vertices (summation over j:,, a;
is assumed)

A. Kitaev and Liang Kong, Comm. Math. Phys. 313, 351 (2012)
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Motivation for Rep string-net

On a given link, associated Hilbert space is C[G] = D, Clg)-
Left action of G on C[G]: Ly|g) = |hg).

Right action of G on C[G]: Ry|g) = }gh_1>.

These two actions commute.

o—————0
i &

Gauge transformation: T(h;, h;) = Ly, o Ry,
Gauge invariant constraint at site i: project on singlet subspace of

&), C[G]j; for the Ly, action, equivalent to choose an element in
Hompgep . (C, Q); C[G]j), i.e. to satisfy Repg fusion rule at site /.



Basics of Rep¢ (I)

Objects: Finite dimensional representations (E, p) of G.
Arrows: Homgep ((E, p), (F,0)) is composed of linear maps
f : E — F such that

0
E - E
commutes for any g
f ‘f in G.
F = F
Tensor product: (E,p) ® (F,0) Z(E® F,p® o).

Unit object: 1 = (C,id).

Homgep (1, (E, p)) = {v € E,ps(v) = v,Vg € G}: Invariant
subspace of E under p.



Basics of Rep¢ (II)

Duality: (E, p)* = (E*, p*), where pg = pg,l.
Exercise: Check that evpg : E*® E — C and coevg : C — E® E*
defined in Vec also define arrows in Repg.

Simple objects: Finite dimensional irreducible representations
(E,',p,') of G.

Classical decomposition of C[G]:

As a vector space: C[G] =&, Ei ® Ef

Left action: €D;(Ei, pi) ® (EF,id)

Right action: €;(E;,id) ® (E/, p?)

Used in Buerschaper and Aguado PRB 80, 155136 (2009).



Fluxless constraint in Rep¢ (1)

H=(QE)® <@{ng} ¢ !{gy}))

Rep string-net prescription:

First apply gauge invariance at vertices, to get Hgg, using:
TNV ® Hegh) = (@inin)(V) @ [{higz h7'})

Then form Her/N = Hompgep (1, Q; (Ei, pi))-

Question: Is this equivalent to imposing the fluxless constraint:
812 823.--8n-1,n8n1 = € ?



Fluxless constraint in Rep¢ (I1)

H= (R E)&® (EB{g,.,.} C Hg"f'”)

Fluxless constraint: g12 g23...8n—1,n 8n1 = € defines Hzpc.
Gauge action: T({h})(v ® [{gs})) = (®ipi )(v) ® |{hi g5 b *})

In fluxless sector, we can bring {gj;} to the trivial configuration
{gij = e} by a gauge transformation, which has for stabilizor
{h; = h}, i.e. the diagonal subgroup in G; X ... X G,.

Invariant states in Hypc are in 1 to 1 correspondence with
invariant states in ), E; under p = Q); pj, that is

HomRePG(l’ ®i (Ei7 pi))'

This is the expected image subspace of the plaquette projector in
the Rep¢ string-net model.



Morita equivalence

Models for Gapped Boundaries and Domain Walls

Alexei Kitaev!, Liang Kong?

! California Institute of Technology, Pasadena, CA 91125, USA. E-mail: kitaev@igi.caltech.edu
2 Institute for Advanced Study, Tsinghua University, Beijing 100084, China.
E-mail: kong.fan.liang @ gmail.com

Received: 24 May 2011 / Accepted: 18 January 2012
Published online: 7 June 2012 — @ Springer-Verlag 2012

Abstract: We define a class of lattice models for two-dimensional topological phases
with boundary such that both the bulk and the boundary excitations are gapped. The bulk
part is constructed using a unitary tensor category C as in the Levin-Wen model, whereas
the boundary is associated with a module category over C. We also consider domain walls
(or defect lines) between different bulk phases. A domain wall is transparent to bulk exci-
tations if the corresponding unitary tensor categories are Morita equivalent. Defects of
higher codimension will also be studied. In summary, we give a dictionary between
physical ingredients of lattice models and tensor-categorical notions.

Comm. Math. Phys. 313, 351 (2012)



Module categories: associativity constraints

XYM =, (X®Y)eM

] X,Y,Z,X',Y'inC

X' @ (Y oM) 2 (X e Yo M

(XRY)o(Ze M)

X2(Y®(Ze M) (XeY)eZ)oM

Xe(YozZ)oM) ——(Xe (Yo 2))eM



Module categories: behavior of the unit object

XeloM) XM, Gol)ec
idx |2 Ay px Rlidpy

XeM —I9  xeom

Important example of module category:
M = Vec is a module category over C = Vecg and also over
D = Repg.



Module categories and line defects

4 N
U )
\ V
>0 > & >
A
@
R 57 A 57

s/ 3\
U
v
>0 >
A
(J
M 57

>0
JAY
*

Fig. 8. A ncighborhood of a defect line between two topological phases, where i, j, k.l € C. A4
M.’ LKLV eD.

Kitaev and Kong (2012)
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Point excitations in string-net models

Flux: Vecg fusion rule violated at a dual lattice site.
Charge: Rep fusion rule violated at an original lattice site.

Vi Vo Vi

%!
X:
:9}1 2 ¥1
X3

YZ4x, —— ) Y

S)O?X4 &




Definition of Z(.A)(/)

Objects of Z(.A) are pairs (X, o) with X object in A and ¢ is an
half-braiding, i.e. a collection of arrows oy : VR X — X ® V
defined for any object V in A, subject to two conditions:
Naturality:

vex —Y . XgV

) ) commutes for all
f®1dx 1dx®f fEHOInA(V, W)
Wex —Y 0 XeoWw

Compatibility with tensor product: oy, is given by:

(Ve W)®XM>V®(W®X)M>V®(X® w)
ovew a;,lX,W

X® (Ve W)M(X@ V)®WM(V®X)®W



Definition of Z(A)(/l)

An arrow f of Z(A) from (X,o) to (Y, ) is an arrow
f € Hom (X, Y) such that:

Vax — Y o XoV

. ) commutes for any
idv|® f Felidv object Vin A.

Vey —X o YeVv



Z(.A) has tensor products

(X,0)®(Y,7)=(X® Y,7.0), where 7.0 is the half-braiding
defined by:

-1
a .
V®(X®Y)M(V®X)®YM(X® V)® Y

(r.0)v ax,v,w
-1
o ~ -
XeoY)eV—2YY xXg(vye V)MX@(V@ Y)

Exercises:

» Check that 7.0 satisfies the two constraints (naturality and
compatibility with tensor product) involved in the definition of
a half-braiding.

» For f: (X,0) = (X',0), g .= (Y,7),(Y',7'), check that
feg: (X,0)o(Y,7) = (X', d)® (Y 7') also defines an
arrow in Z(A).



Associativity of tensor product and unit object in Z(.A)

(X, p)e(Y,0))©(Z,7) (X,p)@((Y,0)®(Z,7))

(XeY)® Z,1.(0.p))

14 o 14
XV L (X @ (Y ©2),(r.o).p)

Exercises:

>

| 2

Check that ax,y 7 defines an arrow from
(X®Y)®Z,1.(0.p)) to (X® (Y ® Z),(r.0).p) in Z(A).
Check that naturality of a and pentagon identify transfer
from A to Z(A).

Check that (1, 7) with

rv=1Itorn :V®l— V — 1®Visan object in Z(A).

Check that (1,7) is a unit object with respect to the tensor
product in Z(A).



Description of Z(Vecg) (I)

Naturality: (X, o) is determined by a collection of linear maps
Og .kt Xk = (6g @ X)gk —> (X ® 0g)gk = Xghg—1
Minimal objects of Z(Vecg) are supported on given conjugacy
class Cl(k) of G.
Compatibility with tensor product: ognx = 04 pip—1 © Tg.k
If g, h € Stab(k), 0ghk = 0g.k © 0g k, SO We get a representation p
of Stab(k), acting on a C vector space E.
Description of (X, 0): Pick a set of representatives {g;} so that
any element in Cl(k) may be uniquely written as g,-kg,-_l. Then:
Xg,-kg,-_l = Ceg®E

O’h(e,' ® V) = ® p(S)(V)

hgi = gjs,s € Stab(k)



Description of Z(Vecg) (II)

Arrows f from (X,0) to (Y,7):
» If (X,0) and (Y, 7) are supported on different conjugacy
classes: Hom z(veee)((X, ), (Y, 7)) = 0.
» If (X,0) and (Y, 7) are both supported on Cl(k):
Hom z(veee) (X, 0), (Y, 7)) = Hompgep(siab(k)) (0o, o7 )-

E—2e)
f f‘ commutes for all s € Stab(k)
F

e p-(s

~

f(e,- & V) =6 f(v)



Magnetic flux excitations in Z(Vecg)

Magnetic flux excitations correspond to choosing the identity
representation of Stab(k): E = C and id(s) = id¢ for all
s € Stab(k). The corresponding object

X(Cl(k)) = Bgecin) Clg)- Then:

on(lg)) = |hgh™)

Tensor product of magnetic flux excitations:

(X(Cl),id) ® - - - ® (X(Cl,),id) is associated to the G-graded
vector space X = @, cc, Clg1, .., gn). The grading is defined by
‘gla ~~7gn> € Xgl...g,,-

onlgly -, 8n) = ’hglh_l, . hg,,h_1>



Hom z(vee) (1, (X(Cly),id) ® - - - @ (X(Cl,), id))

Motivation: Space of states on a sphere with n punctures, carrying
magnetic flux excitations associated to Cly,--- , Cl, conjugacy
classes.

Define (X, o) = (X(CL),id) ® - - ® (X(C1,), id).
HomZ(VecG)(]-v (X7 J)) = HomZ(VecG)(17 (Xea Ue))
= HomRep(G) (1d> O-e)
= {veX|Vhe G,op(v)=v}

» Basis for Xe: {|g1,...,8n) |gi € Cl;, g1...8n = €}.
o permutes basis vectors.

v

» Dimension of invariant vectors subspace = number of orbits of
basis vectors under o, permutations (gauge transformations)
= original lattice gauge theory count.



Equivalence between Z(.A) and Rep( TA)

Developed in Lan and Wen (PRB (2014)).
General proof for A spherical fusion category given by Popa,
Shlyakhtenko, Vaes (2018).

Useful, because Rep(TA) is semi-simple, i.e. any representation of
T(A) can be decomposed as a direct sum of irreducible
representations (Muger (2003)).

| will follow the presentation of Hardiman (arXiv:1911.07271). He
introduces a category 7 (.A) called the tube category of A, and a

related category R7(A). He shows separately equivalence between
Z(A) and RT(A) and then between R7(A) and Rep(TA).



The tube category 7 (A)

» Objects are the same as the objects of A.

» Arrows are different:
Homy(4)(X,Y) = @grHoma(R® X, Y @ R).

> TA = Homy(4)(Dr, Ds) = BrsHoma(R®S,S® R).
» Arrow composition: g o f is given by:

@T ZR.S,b K Y >

S Z



The RT(A) category

Objects of RT(A): contravariant functors F from 7 (A) to Vec.
Example: Hom(.,Z), where Z is a fixed object in T(A).

T(A) Vec Vec

X F(X) Hom(X,Z2) F preserves composition of

arrows:

Ul F(U)T -OUT F(uov) = F(v)o F(u)

Y F(Y) Hom(Y,Z2)
Arrows of RT (A): natural transformations v between functors.
T(A) Vec Vec

X F(X) —— 6(X)

u F(u G(U)T

)
Y F(Y) —2— G(X)



Notion of equivalence between categories

Categories A and B are said to be equivalent if there exists a
functor ® from A to B such that:

» For all pairs of objects A, A" in A,
¢ : Hom 4(A, A') — Hompg(®P(A), ®(A")) is bijective. P is
said to be fully faithful.

» For any object B in B, there exists an object A in A such that
B is isomorphic to ®(A). ® is said to be essentially surjective.



Equivalence between Z(.A) and RT(.A) (1)

Wanted: a functor ® from Z(A) to RT(A).
Start from an object (X, 7) in Z(.A). We define from it an object
F = ®(X,7) in RT(A), i.e a functor from T(.A) to Vec.

Action of F on objects in T(A):
F(Y) = Homu(Y,X).
Action of F on arrows in T (A):

T(A) Vec
Z F(Z) =Homyu(Z,X)
o Flao)|

Y F(Y) = Homy(Y, X)




Equivalence between Z(.A) and RT(.A) (1)

Exercise: Given G,H,R,S, T simple objects in A and A, i so that

A€ Homyg(G®S,R® G) defines Ag € Homy(4)(S, R)
p € Homy(H® T,S® H) defines puy € Homy()(T,S)

Check that F(Ag o uy) = F(uy) o F(Ag), i.e. F is a functor from
T(A) to Vec.

Should also be discussed: action of ® on arrows in Z(A) gives

arrows in RT(A).

For a proof that ® is an equivalence between Z(A) and R7(A),
see section 7 of Hardiman (2019).



Equivalence between R7 (A) and Rep(TA)

Define U = P S, object in T(A). Then: TA = Homy(4)(U, U).
For F object of R7(A), i.e. a functor from T (A) to Vec, F(U) is
a C vector space, on which TA acts by right multiplication:

If f:U— Ue€TA, F(f) is a linear map F(U) — F(U).

Notation: for v € F(U), F(f)(v) = v.f, so that:
F(fog)=F(g)oF(f) reads v.(fog)=(v.f).g

Consider an arrow v : F—G in RT(A):

T(A) Vec Vec
U F(U) —2Y— G(U)

fl F(f)[ G(f)] commutes,
0] F(U) —ZY s G(U)

so vy is also an arrow in Rep( TA).



Equivalence between R7 (A) and Rep(TA)

We have thus defined a functor W from R7(A) to Rep(TA).

This is a category equivalence, see Remark 5.4 of Hardiman
(2019). The argument is based on an early result in category
theory. See e. g. the book by B. Mitchell, Theory of categories
(1965), theorem 4.1 page 104.



A glimpse at Morita equivalence

Source: Etingof, Gelaki, Nikshych, Ostrik, Tensor categories, in
particular sections 7.12 and 7.16.

Consider /M a over C.

Define D = Fung (M, M). It is a tensor category (via composition
of functors), with duality (notion of adjoint functor), and is
also a over D.

C and D are said to be Morita equivalent. Then Z(C) and Z(D)
are equivalent categories.

In particular Vecg and Rep¢ are Morita equivalent, with



What's next?

» Higher genus compact surfaces, ground states and excitations:
uses the fact that Z(.A) is a modular tensor category, Miiger
(2003).

» Exact partition function for general string-net models,
Ritz-Zwilling, Fuchs, Simon, Vidal, PRB 109, 045130 (2024).

» Aspects of Morita equivalence, Lootens, Vancraeynest-De
Cuiper, Schuch, Verstraete, PRB 105, 085130 (2022).

> Categorical symmetries and dualities, Lootens, Delcamp,
Ortiz, Verstraete, PRX Quantum 4, 020357 (2023).



