Introduction to fusion categories

Benoît Douçot

Les Houches, April, 2024

Why categories?

- Original framework for mathematical constructions of topological field theories in $2+1$ dimensions (Reshetikhin-Turaev (1991), Turaev-Viro (1992)).
- Explicit lattice Hamiltonian formulations (Levin-Wen (2005)).
- Extensions to higher dimensions (next week lecture by C. Delcamp).
- Generalized symmetries and dualities (next week lecture by L. Lootens).
- Provides many new models (general constructions), and also helps to understand why things work: many calculations are replaced by drawings!

Various constructions of TQFT's in $2+1$ dimensions

- Reshetikhin-Turaev construction requires a modular tensor category \mathcal{C}. Defines a Hilbert space $Z_{\mathrm{RT}, \mathcal{C}}(\Sigma)$ for any closed surface Σ and a vector $Z_{\mathrm{RT}, \mathcal{C}}(\mathcal{M}) \in Z_{\mathrm{RT}, \mathcal{C}}(\partial \mathcal{M})$ for any smooth 3-manifold \mathcal{M}. This is a non local construction, since it uses surgery of manifolds.
- Turaev-Viro (generalized by Barrett-Westbury (1996)) requires a (spherical) fusion category \mathcal{A} as input. This construction is local, and it involves discretized path integrals.
- Key result: $Z_{\mathrm{TV}, \mathcal{A}}=Z_{\mathrm{RT}, \mathrm{Z}(\mathcal{A})}$, where $\mathrm{Z}(\mathcal{A})$ is the Drinfeld center of \mathcal{A} (Reshetikhin-Virelizier (2010), Balsam-Kirillov (2010)).
- String nets: explicit construction of $Z_{\mathrm{TV}, \mathcal{A}}(\Sigma)$ as ground-state of a local lattice Hamiltonian (Levin-Wen (2005)).
Generalization of Kitaev's lattice gauge theory model of anyons (1997-2003).

Outline

1) Kitaev's lattice gauge model as a string net: magnetic picture
2) String nets from a fusion category
3) Kitaev's lattice gauge model as a string net: electric picture
4) Boundary excitations: the center construction

2D topological lattice gauge theories (Kitaev (2003))

Consider a planar graph, and a finite group G. The Hilbert space of the model is $\mathcal{H}=\mathcal{H}_{\mathrm{ZFC}} / \mathcal{N}$. $\mathcal{H}_{\mathrm{ZFC}}$ has an orthonormal basis of vectors $\left|\left\{g_{i j}\right\}\right\rangle$, with $i j$ a link on the lattice, $g_{i j}=g_{j i}^{-1} \in G$, satisfying the zero flux condition: $g_{i_{1} i_{2}} g_{i_{2} i_{3}} \ldots g_{i / i_{1}}=e$ for any plaquette bounded by / links.
Gauge transformations: Pick $h_{i} \in G$ for each site i. Define $\left(\mathcal{T}_{h} g\right)_{i j}=h_{i} g_{i j} h_{j}^{-1}$. This transformation preserves the zero flux condition on all plaquettes. \mathcal{N} is the subspace of $\mathcal{H}_{\mathrm{ZFC}}$ generated by vectors $\left|\left\{g_{i j}\right\}\right\rangle-\left|\left\{\left(\mathcal{T}_{h} g\right)_{i j}\right\}\right\rangle$.

$$
\mathcal{H}_{\mathrm{ZFC}}=\mathcal{H}_{\mathrm{ZFC}, \mathrm{~S}} \oplus \mathcal{N}
$$

So $\mathcal{H}=\mathcal{H}_{\mathrm{ZFC}} / \mathcal{N} \cong \mathcal{H}_{\mathrm{ZFC}, \mathrm{S}}=$ ground-state of $\left(\mathrm{id}-\mathcal{P}_{\mathrm{S}}\right)$.

2D topological lattice gauge theories (II)

Key fact: On a simply connected planar graph, any fluxless gauge configuration is related to the trivial one $\left(g_{i j}=e\right)$ by a gauge transformation.

$$
\begin{aligned}
& \text { We wish to find }\left\{h_{i}\right\} \text { such that } \\
& h_{i} g_{i j} h_{j}^{-1}=e \\
& \begin{array}{l}
h_{5}=h_{0} g_{01} g_{12} g_{23} g_{34} g_{45} \\
h_{5}=h_{0} g_{06} g_{67} g_{78} g_{89} g_{95}
\end{array}
\end{aligned}
$$

For a fluxless configuration, both paths give the same h_{5} : a non-Abelian and discrete version of Stokes' theorem.
Cohomological viewpoint on 2D topological theories.
S^{2} is simply connected, so $\mathcal{H}\left(S^{2}\right)=\mathbb{C}$. There exists a topological ground-state degeneracy on positive genus closed compact surfaces Σ, i.e. $\operatorname{dim} \mathcal{H}(\Sigma) \geq 2 \longrightarrow$ idea of topological quantum
computation (Kitaev (1997-2003)).

Sphere with n holes

fluxless condition through complement of the holes: $k_{1} g_{1} k_{1}^{-1} \cdots k_{n} g_{n} k_{n}^{-1}=e$ Gauge transformations:

$$
\begin{aligned}
& k_{i} \rightarrow h_{0} k_{i} h_{i}^{-1} \\
& g_{i} \rightarrow h_{i} g_{i} h_{i}^{-1}
\end{aligned}
$$

Setting $h_{i}=h_{0} k_{i}$, we get $k_{i}=e$. So $\mathcal{H}\left(S^{2}, n\right)=\mathcal{H}_{\text {ZFC }} / \mathcal{N}$, where $\mathcal{H}_{\text {ZFC }}$ is spanned by basis vectors $\left|g_{1}, \cdots, g_{n}\right\rangle$ such that $g_{1} g_{2} \cdots g_{n}=e$, and \mathcal{N} is generated by nul vectors $\left|g_{1}, \cdots, g_{n}\right\rangle-\left|h g_{1} h^{-1}, \cdots, h g_{n} h^{-1}\right\rangle$ associated to gauge transformations.
If $n=1, \operatorname{dim}\left(\mathcal{H}\left(S^{2}, 1\right)\right)$ is equal to the number of conjugacy classes of G. For $n \geq 2$, we can fix conjugacy classes
$\mathrm{Cl}_{1}, \mathrm{Cl}_{2}, \ldots, \mathrm{Cl}_{n}$ attached to the holes.
$\mathcal{H}\left(S^{2}, n, \mathrm{Cl}_{1}, \ldots, \mathrm{Cl}_{n}\right)=\operatorname{Hom}_{Z\left(\mathrm{Vec}_{G}\right)}\left(1,\left(X\left(\mathrm{Cl}_{1}\right), \mathrm{id}\right) \otimes \cdots \otimes\left(X\left(\mathrm{Cl}_{n}\right), \mathrm{id}\right)\right)$

2D topological lattice gauge theories (III)

PHYSICAL REVIEW A 67, 022315 (2003)

Anyons from nonsolvable finite groups are sufficient for universal quantum computation
Carlos Mochon*
Institute for Ouantum Information, California Institute of Technology, Pasadena, California 91125
(Received 1 October 2002; published 28 February 2003)
We present a constructive proof that anyonic magnetic charges with fluxes in a nonsolvable finite group can perform universal quantum computations. The gates are built out of the elementary operations of braiding, fusion, and vacuum pair creation, supplemented by a reservoir of ancillas of known flux. Procedures for building the ancilla reservoir and for correcting leakage are also described. Finally, a universal qudit gate set, which is ideally suited for anyons, is presented. The gate set consists of classical computation supplemented by measurements of the X operator.

FIG. 1. Exchanging two anyons.

FIG. 2. Conjugating a pair of anyons.

Proposed implementation with Josephson circuits

G is the permutation group \mathcal{S}_{3}
Douçot, loffe, Vidal, PRB 69, 214501 (2005)

Outline

1) Kitaev's lattice gauge model as a string net: magnetic picture
2) String nets from a fusion category
3) Kitaev's lattice gauge model as a string net: electric picture
4) Boundary excitations: the center construction

Basics of categories

" Since a category consists of arrows, our subject could also be described as learning how to live without elements, using arrows instead." S. Mac Lane, Categories for the working mathematician (1971)

$$
\begin{aligned}
& f \in \operatorname{Hom}(\mathrm{~b}, \mathrm{c}), g \in \operatorname{Hom}(\mathrm{a}, \mathrm{~b}) \\
& f \circ g \in \operatorname{Hom}(\mathrm{a}, \mathrm{c}) \\
& \mathrm{id}_{a} \in \operatorname{Hom}(a, a), \operatorname{id}_{b} \in \operatorname{Hom}(b, b) \\
& g \circ \operatorname{id}_{a}=g=\operatorname{id}_{b} \circ g
\end{aligned}
$$

Example: Consider an ordered set (S, \leq). It defines a category \mathcal{C}, whose objects are elements of S and $\operatorname{Hom}(a, b)$ contains a unique arrow if $a \leq b$, and is empty otherwise.

\mathbb{C}-linear categories

- $\operatorname{Hom}(a, b)$ is a finite dimensional vector space over \mathbb{C}, such that composition of arrows is \mathbb{C}-bilinear:

$$
\begin{array}{ll}
h \circ(\lambda f+\mu g)=\lambda(h \circ f)+\mu(h \circ g) & f, g \in \operatorname{Hom}(a, b) \\
(\lambda h+\mu k) \circ f=\lambda(h \circ f)+\mu(k \circ g) & h, k \in \operatorname{Hom}(b, c) \\
& \lambda, \mu \in \mathbb{C} .
\end{array}
$$

- Existence of a zero object 0 , such that $\operatorname{Hom}(0,0)=0=\left\{\mathrm{id}_{0}\right\}$.
- Existence of direct sums $a \oplus b$.

$$
\begin{aligned}
& p \circ i=\mathrm{id}_{a}, q \circ j=\mathrm{id}_{b} \\
& q \circ i=0, p \circ j=0 \\
& i \circ p+j \circ q=\mathrm{id}_{a \oplus b}
\end{aligned}
$$

\mathbb{C}-linear categories (II)

Important consequence:

$$
\begin{aligned}
\operatorname{Hom}\left(\bigoplus_{\alpha} a_{\alpha}, \bigoplus_{\beta} b_{\beta}\right) & \cong \bigoplus_{\alpha, \beta} \operatorname{Hom}\left(a_{\alpha}, b_{\beta}\right) \\
f & \mapsto\left\{f_{\alpha, \beta}=p_{\beta} \circ f \circ i_{\alpha}\right\}
\end{aligned}
$$

Fusion categories

- Each object X is a finite direct sum of simple objects X_{i} : $X=\bigoplus_{i} n_{i} X_{i} . \operatorname{Hom}\left(X_{i}, X_{j}\right)=0$ if $i \neq j$ and $(\mathbb{C}$ alg. closed) $\operatorname{Hom}\left(X_{i}, X_{i}\right)=\mathbb{C} \operatorname{id}_{X_{i}}$.
- There are finitely many simple objects (modulo isomorphisms).

First contact with string net models

Plaquette of lattice gauge model \rightarrow site on the dual lattice. Zero flux condition $g_{1} g_{2} g_{3} g_{4}=e$ at each dual lattice site.

The Vec_{G} category

- Objects: G-graded vector spaces $V=\bigoplus_{g \in G} V_{g}$ over \mathbb{C}
- Arrows from V to W : Collection of linear maps $f_{g}: V_{g} \rightarrow W_{g}$
- Simple objects: δ_{g} such that $\left(\delta_{g}\right)_{h}=0$ if $g \neq h$ and $\left(\delta_{g}\right)_{g}=\mathbb{C}$.

First step: assign an object of Vec_{G} to each link of (dual) lattice. But: how to implement the zero flux condition at (dual) lattice sites?
$g_{1} g_{2} g_{3} g_{4}=e \Leftrightarrow \operatorname{Hom}\left(\mathbb{C}, \delta_{g_{1}} \otimes \delta_{g_{2}} \otimes \delta_{g_{3}} \otimes \delta_{g_{4}}\right) \neq 0$
Each site satisfies the Vec_{G} fusion rules.

Further requests for \mathcal{A} (input category) from string nets

Fusion rule for $\mathcal{A}=\operatorname{Vec}_{G}$ involves $\operatorname{Hom}\left(\mathbb{C}, \delta_{g_{1}} \otimes \delta_{g_{2}} \otimes \delta_{g_{3}} \otimes \delta_{g_{4}}\right)$. For a general \mathcal{A} :

- \mathbb{C} is replaced by a unit object, denoted by 1 .
- We need a notion of tensor product. In $\operatorname{Vec}_{G}:(V \otimes W)_{g}=\bigoplus_{h}\left(V_{h} \otimes W_{h}{ }^{-1} g\right)$.
- A link is adjacent to two sites. We need to swap orientation: $g_{i j} \rightarrow g_{j i}=g_{i j}^{-1}$ becomes $V_{i j} \rightarrow V_{i j}^{*}$: notion of duality.

Tensor products: associativity constraints

$$
\begin{gathered}
a \otimes(b \otimes c) \xrightarrow{\alpha_{a b c}}(a \otimes b) \otimes c \\
f \otimes|(g \otimes h) \quad(f \otimes g)| \otimes h \\
a^{\prime} \otimes\left(b^{\prime} \otimes c^{\prime}\right) \xrightarrow{\alpha_{a^{\prime} b^{\prime} c^{\prime}}}\left(a^{\prime} \otimes b^{\prime}\right) \otimes c^{\prime}
\end{gathered}
$$

$$
\overbrace{a \otimes(b \otimes(c \otimes d))}^{((a \otimes b) \otimes(c \otimes d)}
$$

Tensor products: the unit object

Mac Lane Coherence theorem: Consider words composed of objects in \mathcal{A}, tensor product signs, and parentheses. Pick a pair of words, involving the same sequences of objects, but differing in terms of location of parentheses and of possible of ocurrences of $\mathbf{1}$. Example: $(((a \otimes \mathbf{1}) \otimes(b \otimes c)) \otimes \mathbf{1}) \otimes d$ and $a \otimes(b \otimes(c \otimes d))$. It is possible to connect them by several different sequences of arrows, involving α, λ and ρ isomorphisms. Then: all such sequences induce the same arrow between these two words.

Duality (I)

V^{*} is a left dual for V if we have two arrows $\mathrm{ev}_{V}: V^{*} \otimes V \rightarrow \mathbf{1}$ and $\operatorname{coev}_{V}: \mathbf{1} \rightarrow V \otimes V^{*}$ such that (rigidity):
$V \xrightarrow{\lambda_{V}^{-1}} \mathbf{1} \otimes V \xrightarrow{\text { coev } \otimes \mathrm{id}}\left(V \otimes V^{*}\right) \otimes V \xrightarrow{\alpha^{-1}} V \otimes\left(V^{*} \otimes V\right) \xrightarrow{\mathrm{id} \otimes \mathrm{ev}}$ $V \otimes 1 \xrightarrow{\rho_{V}} V=\operatorname{id}_{V}$
$V \xrightarrow{\rho_{V^{*}}^{-1}} V^{*} \otimes \mathbf{1} \xrightarrow{\mathrm{id} \otimes \mathrm{coev}} V^{*} \otimes\left(V \otimes V^{*}\right) \xrightarrow{\alpha}\left(V^{*} \otimes V\right) \otimes V^{*} \xrightarrow{\mathrm{ev} \otimes \mathrm{id}}$ $\mathbf{1} \otimes V^{*} \xrightarrow{\lambda_{V^{*}}} V^{*}=\operatorname{id}_{V^{*}}$.

Vec: (finite dimensional vector spaces). ev $V: V^{*} \otimes V \rightarrow \mathbb{C}$ sends $\varphi \otimes v$ into $\varphi(v)$. Pick dual bases $\left\{\alpha_{i}\right\},\left\{e_{j}\right\}$ for V^{*} and V, i.e. $\alpha_{i}\left(e_{j}\right)=\delta_{i j} . \operatorname{coev} v: \mathbb{C} \rightarrow V \otimes V^{*}$ sends $1 \in \mathbb{C}$ into $\sum_{i} e_{i} \otimes \alpha_{i}$. Rigidity: $v=\sum_{i} \alpha_{i}(v) e_{i}$ and $\varphi=\sum_{i} \varphi\left(e_{i}\right) \alpha_{i}$ for any $v \in V$ and $\varphi \in V^{*}$.
$\operatorname{Vec}_{G}: \mathbf{1}=\delta_{e} .\left(V^{*}\right)_{g}=\left(V_{g^{-1}}\right)^{*}$.

Graphical representation of duality axiom

Duality (II)

Extended coherence theorem: Consider words composed of objects in \mathcal{A}, tensor product signs, and parentheses. Pick a pair of words, differing in terms of location of parentheses and of possible of ocurrences of $\mathbf{1}$, but also via possible annihilation (resp. creation) of $a^{*} a$ (resp $a a^{*}$) pairs. It is possible to connect them by several different sequences of arrows, involving α, λ, ρ isomorphisms, and ev and coev arrows. Then: all such sequences induce the same arrow between these two words.

Example:
$\left((a \otimes(b \otimes \mathbf{1})) \otimes c^{*}\right) \otimes((c \otimes d) \otimes \mathbf{1}) \rightarrow(a \otimes e) \otimes\left(\left(e^{*} \otimes b\right) \otimes d\right)$

Graphical representation

$$
\left((a \otimes(b \otimes \mathbf{1})) \otimes c^{*}\right) \otimes((c \otimes d) \otimes \mathbf{1}) \rightarrow(a \otimes e) \otimes\left(\left(e^{*} \otimes b\right) \otimes d\right)
$$

Expression of arrows from simple objects

$A=\bigoplus_{i} n_{i} X_{i}$, where $n_{i}=\operatorname{dim} \operatorname{Hom}\left(A, X_{i}\right)=\operatorname{dim} \operatorname{Hom}\left(X_{i}, A\right)$.
Consider dual bases $\left\{u_{i \alpha}\right\}$ for $\operatorname{Hom}\left(X_{i}, A\right)$, and $\left\{v_{i \alpha}\right\}$ for $\operatorname{Hom}\left(A, X_{i}\right)$, i.e. $v_{i \alpha} \circ u_{i \alpha}=\delta_{i j} \operatorname{id} x_{i}$. Then:

$$
\operatorname{id}_{A}=\sum_{i, \alpha} u_{i \alpha} \circ v_{i \alpha}
$$

Consider $f: A \longrightarrow B . f=f \circ \operatorname{id}_{A}=\sum_{i, \alpha}\left(f \circ u_{i \alpha}^{(A)}\right) \circ v_{i \alpha}^{(A)}$. $f \circ u_{i \alpha}^{(A)}=\sum_{\mu} u_{i \mu}^{(B)} \circ\left(v_{i \mu}^{(B)} \circ f \circ u_{i \alpha}^{(A)}\right)$.
$v_{i \mu}^{(B)} \circ f \circ u_{i \alpha}^{(A)}=\langle\mu| F_{i}^{f}|\alpha\rangle \mathrm{id}_{X_{i}}$

$$
f \circ u_{i \alpha}^{(A)}=\sum_{\mu}\langle\mu| F_{i}^{f}|\alpha\rangle u_{i \mu}^{(B)}
$$

F symbols for associativity isomorphisms

$$
A=\left(X_{i} \otimes X_{j}\right) \otimes X_{k}, B=X_{i} \otimes\left(X_{j} \otimes X_{k}\right) \text { and } f=a X_{i}, X_{j}, X_{k} .
$$

Definition of $\mathcal{H}_{\mathrm{FR}}$

Generalization of $\mathcal{H}_{\mathrm{ZFC}}$, defined for $\mathcal{A}=\operatorname{Vec}_{G}$. Inspired directly by A. Kirillov, Jr., arXiv:1106.6033.

States $\left|\left\{g_{i j}\right\}\right\rangle$ are replaced by $|\{V(\mathbf{e}), \varphi(v)\}\rangle$.

- For each edge e choose an object $V(\mathbf{e})$ in \mathcal{A}.
- Arrow reversal: $V(\overline{\mathrm{e}})=V(\mathbf{e})^{*}$
- For each vertex v choose

$$
\varphi(v) \in \operatorname{Hom}\left(\mathbf{1}, V\left(\mathbf{e}_{1}\right) \otimes \ldots \otimes V\left(\mathbf{e}_{n}\right)\right)
$$

Notion of isomorphism between $\{V(\mathbf{e}), \varphi(v)\}$ and $\left\{V^{\prime}(\mathbf{e}), \varphi^{\prime}(v)\right\}$: Defined by a collection of isomorphisms $f_{\mathbf{e}_{j}}: V\left(\mathbf{e}_{j}\right) \rightarrow V^{\prime}\left(\mathbf{e}_{j}\right)$, such that: $\varphi^{\prime}(v)=\left(f_{\mathbf{e}_{1}} \otimes \ldots \otimes f_{\mathbf{e}_{n}}\right) \circ \varphi(v)$.

Cyclic permutation symmetry around a vertex (I)

$\operatorname{Hom}\left(1, V_{1} \otimes \ldots \otimes V_{n-1} \otimes V_{n}\right) \xrightarrow{Z} \operatorname{Hom}\left(1, V_{n} \otimes V_{1} \otimes \ldots \otimes V_{n-1}\right)$

$$
\left(f_{1} \otimes \ldots \otimes \downarrow f_{n-1} \otimes f_{n}\right) \circ . \quad\left(f_{n} \otimes f_{1} \otimes \ldots \downarrow f_{n-1}\right) \circ
$$

$\operatorname{Hom}\left(\mathbf{1}, V_{1}^{\prime} \otimes \ldots \otimes V_{n-1}^{\prime} \otimes V_{n}^{\prime}\right) \xrightarrow{Z^{\prime}} \operatorname{Hom}\left(\mathbf{1}, V_{n}^{\prime} \otimes V_{1}^{\prime} \otimes \ldots \otimes V_{n-1}^{\prime}\right)$
Pivotal structure $\delta_{V}: V \rightarrow V^{* *}$

Cyclic permutation symmetry around a vertex: $Z^{n}=\mathrm{id}$

Consequence of $\delta V_{1} \otimes V_{2}=\delta_{V_{1}} \otimes \delta V_{2}\left(\right.$ set $\left.W=V_{1} \otimes \cdots \otimes V_{n}\right)$

Definition of the \mathcal{N} subspace (I)

Goal: define local updates of $\{V(\mathbf{e}), \varphi(v)\}$, which do not change the state of the system outside of a finite connected region.

$\in \quad \mathcal{N}$

How to assign a meaning to this notion?

Definition of the \mathcal{N} subspace (II)

where ψ is given by:

\mathcal{H} on a sphere

$\mathcal{H}\left(S^{2}-\{p\}\right)=\mathcal{H}\left(\mathbb{R}^{2}\right)=\operatorname{Hom}_{\mathcal{A}}(\mathbf{1}, \mathbf{1})=\mathbb{C}$
$\pi: \mathcal{H}\left(S^{2}-\{p\}\right) \longrightarrow \mathcal{H}\left(S^{2}\right)$ surjective so $\operatorname{dim} \mathcal{H}\left(S^{2}\right) \leq 1$.
When do we have $\operatorname{dim} \mathcal{H}\left(S^{2}\right)=1$?
A: Constraint near p should always be satisfied.

Equality holds when \mathcal{A} is spherical, i.e. when $\operatorname{tr}_{L}(f)=\operatorname{tr}_{L}(f)$ for any arrow f.

Dimension of objects

$$
\begin{equation*}
=\left.\sum_{i \in \operatorname{lir}(\mathcal{A})} d_{i}\right|^{i} \tag{3.4}
\end{equation*}
$$

Then one has the following relations in $H^{\text {string }}(\Sigma)$:

(3.5)
(3.7)

Kirillov (2011)

The Levin-Wen projector (I)

Figure 6. Operator B_{p}

$B_{p} \psi-\psi \in \mathcal{N}(\Sigma)$ for any $\psi \in \mathcal{H}(\Sigma-\{p\})$, so $\tilde{\pi}$ is surjective.
Description of $\operatorname{Ker} \pi$

$$
H^{s t r i n g}(\Sigma)=H^{\text {string }}(\Sigma-p) /\left\langle(\stackrel{p}{\bullet}\rangle-\left\langle\begin{array}{c}
p \\
\bullet
\end{array}\right)\right\rangle
$$

Kirillov (2011)

If $\psi \in \operatorname{Ker} \pi$ then $B_{p} \psi=0$, so $\tilde{\pi}$ is injective.

The Levin-Wen projector (II)

Models for Gapped Boundaries and Domain Walls

Fig. 3. The action of the plaquette operator B_{p}^{k} : a) the initial state of the plaquette; b) a symbolic representation of the operator B_{p}^{k} applied to it; c) the loop is partially fused using Eq. (12) (some labels and the overall factor are not shown); d) the corner triangles have been evaluated to trivalent vertices (summation over $j_{p}^{\prime}, \alpha_{q}^{\prime}$ is assumed)
A. Kitaev and Liang Kong, Comm. Math. Phys. 313, 351 (2012)

Outline

1) Kitaev's lattice gauge model as a string net: magnetic picture
2) String nets from a fusion category
3) Kitaev's lattice gauge model as a string net: electric picture
4) Boundary excitations: the center construction

Motivation for Rep_{G} string-net

On a given link, associated Hilbert space is $\mathbb{C}[G]=\bigoplus_{g \in G} \mathbb{C}|g\rangle$. Left action of G on $\mathbb{C}[G]: L_{h}|g\rangle=|h g\rangle$.
Right action of G on $\mathbb{C}[G]: R_{h}|g\rangle=\left|g h^{-1}\right\rangle$.
These two actions commute.

Gauge transformation: $\mathcal{T}\left(h_{i}, h_{j}\right)=L_{h_{i}} \circ R_{h_{j}}$
Gauge invariant constraint at site i : project on singlet subspace of $\otimes_{j} \mathbb{C}[G]_{i j}$ for the $L_{h_{i}}$ action, equivalent to choose an element in $\operatorname{Hom}_{\text {Rep }_{G}}\left(\mathbb{C}, \bigotimes_{j} \mathbb{C}[G]_{i j}\right)$, i.e. to satisfy Rep_{G} fusion rule at site i.

Basics of $\operatorname{Rep}_{G}(I)$

Objects: Finite dimensional representations (E, ρ) of G.
Arrows: $\operatorname{Hom}_{\operatorname{Rep}_{G}}((E, \rho),(F, \sigma))$ is composed of linear maps $f: E \longrightarrow F$ such that

> commutes for any g in G.

Tensor product: $(E, \rho) \otimes(F, \sigma) \cong(E \otimes F, \rho \otimes \sigma)$. Unit object: $\mathbf{1}=(\mathbb{C}, \mathrm{id})$.
$\operatorname{Hom}_{\operatorname{Rep}_{G}}(\mathbf{1},(E, \rho)) \cong\left\{v \in E, \rho_{g}(v)=v, \forall g \in G\right\}$: Invariant subspace of E under ρ.

Basics of Rep_{G} (II)

Duality: $(E, \rho)^{*}=\left(E^{*}, \rho^{*}\right)$, where $\rho_{g}^{*}=\rho_{g^{-1}}^{T}$.
Exercise: Check that $\operatorname{ev}_{E}: E^{*} \otimes E \rightarrow \mathbb{C}$ and $\operatorname{coev}_{E}: \mathbb{C} \rightarrow E \otimes E^{*}$ defined in Vec also define arrows in Rep_{G}.

Simple objects: Finite dimensional irreducible representations $\left(E_{i}, \rho_{i}\right)$ of G.

Classical decomposition of $\mathbb{C}[G]$:
As a vector space: $\mathbb{C}[G]=\bigoplus_{i} E_{i} \otimes E_{i}^{*}$
Left action: $\bigoplus_{i}\left(E_{i}, \rho_{i}\right) \otimes\left(E_{i}^{*}\right.$, id $)$
Right action: $\bigoplus_{i}\left(E_{i}, \mathrm{id}\right) \otimes\left(E_{i}^{*}, \rho_{i}^{*}\right)$
Used in Buerschaper and Aguado PRB 80, 155136 (2009).

Fluxless constraint in $\operatorname{Rep}_{G}(I)$

$$
\mathcal{H}=\left(\otimes_{i=1}^{n} E_{i}\right) \otimes\left(\bigoplus_{\left\{g_{i j}\right\}} \mathbb{C}\left|\left\{g_{i j}\right\}\right\rangle\right)
$$

Rep_{G} string-net prescription:
First apply gauge invariance at vertices, to get $\mathcal{H}_{F R}$, using:
$\mathcal{T}\left(\left\{h_{i}\right\}\right)\left(v \otimes\left|\left\{g_{i j}\right\}\right\rangle\right)=\left(\otimes_{i} \rho_{i, h_{i}}\right)(v) \otimes\left|\left\{h_{i} g_{i j} h_{j}^{-1}\right\}\right\rangle$
Then form $\mathcal{H}_{F R} / \mathcal{N} \cong \operatorname{Hom}_{\text {Rep }_{G}}\left(1, \otimes_{i}\left(E_{i}, \rho_{i}\right)\right)$.
Question: Is this equivalent to imposing the fluxless constraint: $g_{12} g_{23} \ldots g_{n-1, n} g_{n 1}=e$?

Fluxless constraint in Rep_{G} (II)

$$
\mathcal{H}=\left(\bigotimes_{i=1}^{n} E_{i}\right) \otimes\left(\bigoplus_{\left\{g_{i j}\right\}} \mathbb{C}\left|\left\{g_{i j}\right\}\right\rangle\right)
$$

Fluxless constraint: $g_{12} g_{23} \ldots g_{n-1, n} g_{n 1}=e$ defines $\mathcal{H}_{\mathrm{ZFC}}$.
Gauge action: $\mathcal{T}\left(\left\{h_{i}\right\}\right)\left(v \otimes\left|\left\{g_{i j}\right\}\right\rangle\right)=\left(\otimes_{i} \rho_{i, h_{i}}\right)(v) \otimes\left|\left\{h_{i} g_{i j} h_{j}^{-1}\right\}\right\rangle$
In fluxless sector, we can bring $\left\{g_{i j}\right\}$ to the trivial configuration $\left\{g_{i j}=e\right\}$ by a gauge transformation, which has for stabilizor $\left\{h_{i}=h\right\}$, i.e. the diagonal subgroup in $G_{1} \times \ldots \times G_{n}$.

Invariant states in $\mathcal{H}_{\mathrm{ZFC}}$ are in 1 to 1 correspondence with invariant states in $\bigotimes_{i} E_{i}$ under $\rho=\bigotimes_{i} \rho_{i}$, that is $\operatorname{Hom}_{\operatorname{Rep}_{G}}\left(\mathbf{1}, \bigotimes_{i}\left(E_{i}, \rho_{i}\right)\right)$.
This is the expected image subspace of the plaquette projector in the Rep_{G} string-net model.

Morita equivalence

Models for Gapped Boundaries and Domain Walls

Alexei Kitaev ${ }^{1}$, Liang Kong ${ }^{2}$
${ }^{1}$ California Institute of Technology, Pasadena, CA 91125, USA. E-mail: kitaev@ iqi.caltech.edu
2^{2} Institute for Advanced Study, Tsinghua University, Beijing 100084, China.
E-mail: kong.fan.liang@gmail.com

Received: 24 May 2011 / Accepted: 18 January 2012
Published online: 7 June 2012 - © Springer-Verlag 2012

Abstract

We define a class of lattice models for two-dimensional topological phases with boundary such that both the bulk and the boundary excitations are gapped. The bulk part is constructed using a unitary tensor category \mathcal{C} as in the Levin-Wen model, whereas the boundary is associated with a module category over \mathcal{C}. We also consider domain walls (or defect lines) between different bulk phases. A domain wall is transparent to bulk excitations if the corresponding unitary tensor categories are Morita equivalent. Defects of higher codimension will also be studied. In summary, we give a dictionary between physical ingredients of lattice models and tensor-categorical notions.

Comm. Math. Phys. 313, 351 (2012)

Module categories: associativity constraints

$$
\begin{aligned}
& X \otimes(Y \otimes M) \xrightarrow{m_{X Y M}}(X \otimes Y) \otimes M \\
& \quad f \otimes|(g \otimes h) \quad(f \otimes g)| \otimes h
\end{aligned} \begin{aligned}
& \mid, Y, Z, X^{\prime}, Y^{\prime} \text { in } \mathcal{C} \\
& X^{\prime} \otimes\left(Y^{\prime} \otimes M^{\prime}\right) \xrightarrow{m_{X^{\prime} Y^{\prime} M^{\prime}}\left(X^{\prime} \otimes Y^{\prime}\right) \otimes M^{\prime}} \begin{array}{l}
\text { in } \mathcal{M}
\end{array}
\end{aligned}
$$

Module categories: behavior of the unit object

$$
\begin{array}{ccc}
X \otimes(\mathbf{1} \otimes M) & \xrightarrow[X 1 M]{\alpha_{X}} & (a \otimes \mathbf{1}) \otimes c \\
i d_{X} \mid \otimes \lambda_{M} & & \rho_{X} \otimes \mid i d_{M} \\
X \otimes M & \quad i d & \\
X \otimes M
\end{array}
$$

Important example of module category:
$\mathcal{M}=\operatorname{Vec}$ is a module category over $\mathcal{C}=\operatorname{Vec}_{G}$ and also over $\mathcal{D}=\operatorname{Rep}_{G}$.

Module categories and line defects

Fig. 8. A neighborhood of a defect line between two topological phases, where $i, j, k, l \in \mathcal{C}, \lambda_{1}, \ldots, \lambda_{9} \in$ $\mathcal{M}, i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime} \in \mathcal{D}$.

Kitaev and Kong (2012)

Outline

1) Kitaev's lattice gauge model as a string net: magnetic picture
2) String nets from a fusion category
3) Kitaev's lattice gauge model as a string net: electric picture
4) Boundary excitations: the center construction

Point excitations in string-net models

Flux: Vec_{G} fusion rule violated at a dual lattice site.
Charge: Rep_{G} fusion rule violated at an original lattice site.

Definition of $Z(\mathcal{A})(I)$

Objects of $Z(\mathcal{A})$ are pairs (X, σ) with X object in \mathcal{A} and σ is an half-braiding, i.e. a collection of arrows $\sigma_{V}: V \otimes X \longrightarrow X \otimes V$ defined for any object V in \mathcal{A}, subject to two conditions: Naturality:

Compatibility with tensor product: $\sigma_{V \otimes W}$ is given by:

Definition of $Z(\mathcal{A})(I I)$

An arrow f of $Z(\mathcal{A})$ from (X, σ) to (Y, τ) is an arrow $f \in \operatorname{Hom}_{\mathcal{A}}(X, Y)$ such that:

$Z(\mathcal{A})$ has tensor products

$(X, \sigma) \otimes(Y, \tau)=(X \otimes Y, \tau . \sigma)$, where $\tau . \sigma$ is the half-braiding defined by:

$$
\begin{aligned}
& V \otimes(X \otimes Y) \xrightarrow{\alpha_{V, X, Y}^{-1}}(V \otimes X) \otimes Y \xrightarrow{\sigma_{V} \otimes \mathrm{id}_{Y}}(X \otimes V) \otimes Y \\
& \left.(\tau . \sigma)_{V}\right|^{\downarrow}{ }^{\downarrow}{ }^{\alpha_{X, V, W}^{-1}} \\
& (X \otimes Y) \otimes V \stackrel{\alpha_{X, Y, V}}{\longleftrightarrow} X \otimes(Y \otimes V) \stackrel{\mathrm{id}_{X} \otimes \tau_{V}}{\leftrightarrows} X \otimes(V \otimes Y)
\end{aligned}
$$

Exercises:

- Check that $\tau . \sigma$ satisfies the two constraints (naturality and compatibility with tensor product) involved in the definition of a half-braiding.
- For $f:(X, \sigma) \rightarrow\left(X^{\prime}, \sigma^{\prime}\right), g: \rightarrow(Y, \tau),\left(Y^{\prime}, \tau^{\prime}\right)$, check that $f \otimes g:(X, \sigma) \otimes(Y, \tau) \rightarrow\left(X^{\prime}, \sigma^{\prime}\right) \otimes\left(Y^{\prime}, \tau^{\prime}\right)$ also defines an arrow in $Z(\mathcal{A})$.

Associativity of tensor product and unit object in $Z(\mathcal{A})$

$$
\begin{array}{cc}
((X, \rho) \otimes(Y, \sigma)) \otimes(Z, \tau) & (X, \rho) \otimes((Y, \sigma) \otimes(Z, \tau)) \\
\mathbb{\| R} \\
((X \otimes Y) \otimes Z, \tau \cdot(\sigma . \rho)) \xrightarrow{\alpha_{X, Y, Z}}(X \otimes(Y \otimes Z),(\tau . \sigma) . \rho)
\end{array}
$$

Exercises:

- Check that $\alpha_{X, Y, Z}$ defines an arrow from $((X \otimes Y) \otimes Z, \tau .(\sigma . \rho))$ to $(X \otimes(Y \otimes Z),(\tau . \sigma) . \rho)$ in $Z(\mathcal{A})$.
- Check that naturality of α and pentagon identify transfer from \mathcal{A} to $Z(\mathcal{A})$.
- Check that $(1, \tau)$ with $\tau_{V}=I_{V}^{-1} \circ r_{V}: V \otimes 1 \longrightarrow V \longrightarrow 1 \otimes V$ is an object in $Z(\mathcal{A})$.
- Check that $(1, \tau)$ is a unit object with respect to the tensor product in $Z(\mathcal{A})$.

Description of $Z\left(\operatorname{Vec}_{G}\right)$ (I)

Naturality: (X, σ) is determined by a collection of linear maps $\sigma_{g, k}: X_{k} \cong\left(\delta_{g} \otimes X\right)_{g k} \longrightarrow\left(X \otimes \delta_{g}\right)_{g k} \cong X_{g k g^{-1}}$ Minimal objects of $Z\left(\operatorname{Vec}_{G}\right)$ are supported on given conjugacy class $\mathrm{Cl}(k)$ of G.

Compatibility with tensor product: $\sigma_{g h, k}=\sigma_{g, h k h^{-1}} \circ \sigma_{g, k}$ If $g, h \in \operatorname{Stab}(k), \sigma_{g h, k}=\sigma_{g, k} \circ \sigma_{g, k}$, so we get a representation ρ of $\operatorname{Stab}(k)$, acting on a \mathbb{C} vector space E.
Description of (X, σ) : Pick a set of representatives $\left\{g_{i}\right\}$ so that any element in $\mathrm{Cl}(k)$ may be uniquely written as $g_{i} k g_{i}^{-1}$. Then:

$$
\begin{aligned}
X_{g_{i} k g_{i}^{-1}} & =\mathbb{C} e_{i} \otimes E \\
\sigma_{h}\left(e_{i} \otimes v\right) & =e_{j} \otimes \rho(s)(v) \\
h g_{i} & =g_{j} s, s \in \operatorname{Stab}(k)
\end{aligned}
$$

Description of $Z\left(\operatorname{Vec}_{G}\right)$ (II)

Arrows \hat{f} from (X, σ) to (Y, τ) :

- If (X, σ) and (Y, τ) are supported on different conjugacy classes: $\operatorname{Hom}_{Z\left(\mathrm{Vec}_{G}\right)}((X, \sigma),(Y, \tau))=0$.
- If (X, σ) and (Y, τ) are both supported on $\mathrm{Cl}(k)$: $\operatorname{Hom}_{Z\left(\operatorname{Vec}_{G}\right)}((X, \sigma),(Y, \tau))=\operatorname{Hom}_{\operatorname{Rep}(\operatorname{Stab}(k))}\left(\rho_{\sigma}, \rho_{\tau}\right)$.

Magnetic flux excitations in $Z\left(\mathrm{Vec}_{G}\right)$

Magnetic flux excitations correspond to choosing the identity representation of $\operatorname{Stab}(k): E=\mathbb{C}$ and $\mathrm{id}(s)=\mathrm{id}_{\mathbb{C}}$ for all $s \in \operatorname{Stab}(k)$. The corresponding object $X(\mathrm{Cl}(k))=\bigoplus_{g \in \mathrm{Cl}(k)} \mathbb{C}|g\rangle$. Then:

$$
\sigma_{h}(|g\rangle)=\left|h g h^{-1}\right\rangle
$$

Tensor product of magnetic flux excitations:
$\left(X\left(\mathrm{Cl}_{1}\right), \mathrm{id}\right) \otimes \cdots \otimes\left(X\left(\mathrm{Cl}_{n}\right), \mathrm{id}\right)$ is associated to the G-graded vector space $X=\bigoplus_{g_{i} \in \mathrm{C}_{i}} \mathbb{C}\left|g_{1}, \ldots, g_{n}\right\rangle$. The grading is defined by $\left|g_{1}, \ldots, g_{n}\right\rangle \in X_{g_{1} \ldots g_{n}}$.

$$
\sigma_{h}\left|g_{1}, \ldots, g_{n}\right\rangle=\left|h g_{1} h^{-1}, \ldots, h g_{n} h^{-1}\right\rangle
$$

$\operatorname{Hom}_{Z\left(\operatorname{Vec}_{G}\right)}\left(1,\left(X\left(\mathrm{Cl}_{1}\right), \mathrm{id}\right) \otimes \cdots \otimes\left(X\left(\mathrm{Cl}_{n}\right), \mathrm{id}\right)\right)$

Motivation: Space of states on a sphere with n punctures, carrying magnetic flux excitations associated to $\mathrm{Cl}_{1}, \cdots, \mathrm{Cl}_{n}$ conjugacy classes.
Define $(X, \sigma)=\left(X\left(\mathrm{Cl}_{1}\right), \mathrm{id}\right) \otimes \cdots \otimes\left(X\left(\mathrm{Cl}_{n}\right), \mathrm{id}\right)$.

$$
\begin{aligned}
\operatorname{Hom}_{Z\left(\operatorname{Vec}_{G}\right)}(1,(X, \sigma)) & =\operatorname{Hom}_{Z\left(\operatorname{Vec}_{G}\right)}\left(1,\left(X_{e}, \sigma_{e}\right)\right) \\
& =\operatorname{Hom}_{\operatorname{Rep}(\mathrm{G})}\left(\mathrm{id}, \sigma_{e}\right) \\
& =\left\{v \in X_{e} \mid \forall h \in G, \sigma_{h}(v)=v\right\}
\end{aligned}
$$

- Basis for $X_{e}:\left\{\left|g_{1}, \ldots, g_{n}\right\rangle \mid g_{i} \in \mathrm{Cl}_{i}, g_{1} \ldots g_{n}=e\right\}$.
- σ_{h} permutes basis vectors.
- Dimension of invariant vectors subspace $=$ number of orbits of basis vectors under σ_{h} permutations (gauge transformations) $=$ original lattice gauge theory count.

Equivalence between $Z(\mathcal{A})$ and $\operatorname{Rep}(T A)$

Developed in Lan and Wen (PRB (2014)).
General proof for \mathcal{A} spherical fusion category given by Popa, Shlyakhtenko, Vaes (2018).

Useful, because $\operatorname{Rep}(T A)$ is semi-simple, i.e. any representation of $T(\mathcal{A})$ can be decomposed as a direct sum of irreducible representations (Müger (2003)).

I will follow the presentation of Hardiman (arXiv:1911.07271). He introduces a category $\mathcal{T}(\mathcal{A})$ called the tube category of \mathcal{A}, and a related category $\mathcal{R} \mathcal{T}(\mathcal{A})$. He shows separately equivalence between $Z(\mathcal{A})$ and $\mathcal{R} \mathcal{T}(\mathcal{A})$ and then between $\mathcal{R} \mathcal{T}(\mathcal{A})$ and $\operatorname{Rep}(T A)$.

The tube category $\mathcal{T}(\mathcal{A})$

- Objects are the same as the objects of \mathcal{A}.
- Arrows are different:
$\operatorname{Hom}_{\mathcal{T}(\mathcal{A})}(X, Y)=\bigoplus_{R} \operatorname{Hom}_{\mathcal{A}}(R \otimes X, Y \otimes R)$.
- TA $=\operatorname{Hom}_{\mathcal{T}(\mathcal{A})}\left(\bigoplus_{R}, \bigoplus_{S}\right)=\bigoplus_{R, S} \operatorname{Hom}_{\mathcal{A}}(R \otimes S, S \otimes R)$.
- Arrow composition: $g \circ f$ is given by:

The $\mathcal{R} \mathcal{T}(\mathcal{A})$ category

Objects of $\mathcal{R} \mathcal{T}(\mathcal{A})$: contravariant functors F from $\mathcal{T}(\mathcal{A})$ to Vec. Example: $\operatorname{Hom}(., Z)$, where Z is a fixed object in $\mathcal{T}(\mathcal{A})$.

$\mathcal{T}(\mathcal{A})$	Vec	Vec	
X	$F(X)$	$\operatorname{Hom}(X, Z)$	F preserves composition
$u \downarrow$	$F(u)$.$\circ u \uparrow$	arrows: \downarrow
Y	$F(Y)$	$\operatorname{Hom}(Y, Z)$	

Arrows of $\mathcal{R} \mathcal{T}(\mathcal{A})$: natural transformations ν between functors.

$\mathcal{T}(\mathcal{A})$	Vec		Vec
X	$F(X) \xrightarrow{\nu_{X}}$	$G(X)$	
$u \downarrow$	$F(u)$		$G(u) \mid$
Y	$F(Y) \xrightarrow{\nu_{Y}}$	$G(X)$	

Notion of equivalence between categories

Categories \mathcal{A} and \mathcal{B} are said to be equivalent if there exists a functor Φ from \mathcal{A} to \mathcal{B} such that:

- For all pairs of objects A, A^{\prime} in \mathcal{A}, $\Phi: \operatorname{Hom}_{\mathcal{A}}\left(A, A^{\prime}\right) \rightarrow \operatorname{Hom}_{\mathcal{B}}\left(\Phi(A), \Phi\left(A^{\prime}\right)\right)$ is bijective. Φ is said to be fully faithful.
- For any object B in \mathcal{B}, there exists an object A in \mathcal{A} such that B is isomorphic to $\Phi(A)$. Φ is said to be essentially surjective.

Equivalence between $Z(\mathcal{A})$ and $\mathcal{R} \mathcal{T}(\mathcal{A})$ (I)

Wanted: a functor Φ from $Z(\mathcal{A})$ to $\mathcal{R} \mathcal{T}(\mathcal{A})$.
Start from an object (X, τ) in $Z(\mathcal{A})$. We define from it an object $F=\Phi(X, \tau)$ in $\mathcal{R} \mathcal{T}(\mathcal{A})$, i.e a functor from $\mathcal{T}(\mathcal{A})$ to Vec.

Action of F on objects in $\mathcal{T}(\mathcal{A})$: $F(Y)=\operatorname{Hom}_{\mathcal{A}}(Y, X)$.
Action of F on arrows in $\mathcal{T}(\mathcal{A})$:

$\mathcal{T}(\mathcal{A})$	Vec
Z	$F(Z)=\operatorname{Hom}_{\mathcal{A}}(Z, X)$
$\alpha_{G} \downarrow$	$F\left(\alpha_{G}\right) \uparrow$
Y	$F(Y)=\operatorname{Hom}_{\mathcal{A}}(Y, X)$

Equivalence between $Z(\mathcal{A})$ and $\mathcal{R} \mathcal{T}(\mathcal{A})$ (II)

Exercise: Given G, H, R, S, T simple objects in \mathcal{A} and λ, μ so that

$$
\begin{array}{lll}
\lambda \in \operatorname{Hom}_{\mathcal{A}}(G \otimes S, R \otimes G) & \text { defines } & \lambda_{G} \in \operatorname{Hom}_{\mathcal{T}(\mathcal{A})}(S, R) \\
\mu \in \operatorname{Hom}_{\mathcal{A}}(H \otimes T, S \otimes H) & \text { defines } & \mu_{H} \in \operatorname{Hom}_{\mathcal{T}(\mathcal{A})}(T, S)
\end{array}
$$

Check that $F\left(\lambda_{G} \circ \mu_{H}\right)=F\left(\mu_{H}\right) \circ F\left(\lambda_{G}\right)$, i.e. F is a functor from $\mathcal{T}(\mathcal{A})$ to Vec.
Should also be discussed: action of Φ on arrows in $Z(\mathcal{A})$ gives arrows in $\mathcal{R} \mathcal{T}(\mathcal{A})$.

For a proof that Φ is an equivalence between $Z(\mathcal{A})$ and $\mathcal{R} \mathcal{T}(\mathcal{A})$, see section 7 of Hardiman (2019).

Equivalence between $\mathcal{R} \mathcal{T}(\mathcal{A})$ and $\operatorname{Rep}(T A)$

Define $U=\bigoplus S$, object in $\mathcal{T}(\mathcal{A})$. Then: $T A=\operatorname{Hom}_{\mathcal{T}(\mathcal{A})}(U, U)$. For F object of $\mathcal{R} \mathcal{T}(\mathcal{A})$, i.e. a functor from $\mathcal{T}(\mathcal{A})$ to Vec, $F(U)$ is a \mathbb{C} vector space, on which $T A$ acts by right multiplication:
If $f: U \rightarrow U \in T A, F(f)$ is a linear map $F(U) \rightarrow F(U)$.
Notation: for $v \in F(U), F(f)(v) \equiv v . f$, so that:
$F(f \circ g)=F(g) \circ F(f)$ reads $v .(f \circ g)=(v . f) . g$
Consider an arrow $\nu: F \longrightarrow G$ in $\mathcal{R} \mathcal{T}(\mathcal{A})$:

so ν_{U} is also an arrow in $\operatorname{Rep}(T A)$.

Equivalence between $\mathcal{R T}(\mathcal{A})$ and $\operatorname{Rep}(T A)$

We have thus defined a functor Ψ from $\mathcal{R} \mathcal{T}(\mathcal{A})$ to $\operatorname{Rep}(T A)$.
This is a category equivalence, see Remark 5.4 of Hardiman (2019). The argument is based on an early result in category theory. See e. g. the book by B. Mitchell, Theory of categories (1965), theorem 4.1 page 104.

A glimpse at Morita equivalence

Source: Etingof, Gelaki, Nikshych, Ostrik, Tensor categories, in particular sections 7.12 and 7.16.

Consider \mathcal{M} a module category over \mathcal{C}.
Define $\mathcal{D}=\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$. It is a tensor category (via composition of functors), with duality (notion of adjoint functor), and \mathcal{M} is also a module category over \mathcal{D}.
\mathcal{C} and \mathcal{D} are said to be Morita equivalent. Then $Z(\mathcal{C})$ and $Z(\mathcal{D})$ are equivalent categories.

In particular Vec_{G} and Rep_{G} are Morita equivalent, with $\mathcal{M}=$ Vec.

What's next?

- Higher genus compact surfaces, ground states and excitations: uses the fact that $Z(\mathcal{A})$ is a modular tensor category, Müger (2003).
- Exact partition function for general string-net models, Ritz-Zwilling, Fuchs, Simon, Vidal, PRB 109, 045130 (2024).
- Aspects of Morita equivalence, Lootens, Vancraeynest-De Cuiper, Schuch, Verstraete, PRB 105, 085130 (2022).
- Categorical symmetries and dualities, Lootens, Delcamp, Ortiz, Verstraete, PRX Quantum 4, 020357 (2023).

